904 resultados para Thermo dynamic analysis
Resumo:
This paper presents the analysis and study of voltage collapse at any converter bus in A C-DC systems considering the dynamics of DC system. The problem of voltage instability is acute when HVDC links are connected to weak AC systems, the strength determined by short circuit ratio (SCR) at the converter bus. The converter control strategies are important in determining voltage instability. Small signal analysis is used to identify critical modes and evaluate the effect of AC system strength and control parameters. A sample two-terminal DC system is studied and the results compared with those obtained from static analysis. Also, the results obtained from small signal analysis are validated with nonlinear simulation.
Resumo:
This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.
Nonlinear dynamic analysis of dragonfly inspired piezoelectrically driven flapping and pitching wing
Resumo:
The nonlinear equations for coupled elastic flapping-twisting motion of a dragonfly in- spired smart flapping wing are used for a flapping wing actuated from the root by a PZT unimorph in the piezofan configuration. Excitation by the piezoelectric harmonic force generates only the flap bending motion, which in turn, induces the elastic twist motion due to interaction between flexural and torsional vibrations modes. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Numerical simulations are performed using a wing whose size is the same as the dragonfly Sympetrum Frequens wing. It is found that the value of average lift reaches to its maximum when the smart flapping wing is excited at a frequency closer to the natural frequency in torsion. Moreover, consideration of the elastic twisting of flapping wing leads to an increase in the lift force. It is also found that the flapping wing generates sufficient lift to support its own weight and carry a small pay- load. Therefore, the piezoelectrically actuated smart flapping wing based on the geometry of Sympetrum Frequens wing and undergoing flapping-twisting motions may be considered as a potential candidate for use in MAV applications.
Resumo:
The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.
Resumo:
Based on the dynamic governing equation of propagating buckle on a beam on a nonlinear elastic foundation, this paper deals with an important problem of buckle arrest by combining the FEM with a time integration technique. A new conclusion completely different from that by the quasi-static analysis about the buckle arrestor design is drawn. This shows that the inertia of the beam cannot be ignored in the analysis under consideration, especially when the buckle propagation is suddenly stopped by the arrestors.
Resumo:
100 p. : graf.
Resumo:
Based on graphic analysis design method of optical resonator, a simple design expression of V-folded cavity of end-pumped solid-state lasers with TEM00 operation is described, which satisfies two criterias of the resonator design. We give numerical simulation of spot size as a function of thermal focal length using this design approach whose advantages are validated experimentally.