951 resultados para Thermal-analysis
Resumo:
In recent years, organoclays have become widely used in many industrial applications, and particularly they have been applied as adsorbents for water purification (de Paiva et al., 2008; Zhou et al., 2008; Park et al., 2011). When the organoclays are enhanced by intercalation of cationic surfactant molecules, the surface properties are altered from hydrophilic to highly hydrophobic. These changes facilitate their industrial applications which are strongly dependent on the structural properties of organoclays (Koh and Dixon, 2001; Zeng et al., 2004; Cui et al., 2007). Thus a better understanding of the configuration and structural change in the organoclays by thermogravimetric analysis (TG) is essential. It has been proven that the TG is very useful for the study of complex minerals, modified minerals, and nanomaterials (Laachachi et al., 2005; Palmer et al., 2011; Park et al., in press, 2011). Therefore, the current investigation involves the thermal stability of a montmorillonite intercalated with two types of cationic surfactants: dodecyltrimethylammonium bromide (DDTMA) and didodecyldimethylammonium bromide (DDDMA) using TG. The modification of montmorillonite results in an increase in the interlayer or basal spacing and enhances the environmental and industrial application of the obtained organoclay.
Resumo:
The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700–775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm−1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm−1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm−1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.
Resumo:
Studies on the low temperature oxidation of polyolefins have been the subject matter of several investigations because of interest in understanding the aging and weathering of polymers. One of the key steps in such an oxtdatton is the formation of hydroperoxide. Estimation of the hydroperoxide in oxidized samples, which is conventionally done by iodometric titrations, is quite important to gain knowledge about the kinetics and mechanism of the process. The present investigation is the first report of the thermal analysis of polypropylene hydroperoxide samples from two angles: (1) the thermal behavior of its decomposition and (2) whether such an analysis leads to knowledge of the concentration of hydroperoxide in the sample.
Resumo:
Differential scanning calorimetry (DSC) has been used to obtain kinetic and nucleation parameters for polymer crystallization under a non-isothermal mode of operation. The available isothermal nucleation growth-rate equation has been modified for non-isothermal kinetic analysis. The values of the nucleation constant (K g ) and surface free energies (sgr, sgr e ) have been obtained for i-polybutene-1, i-polypropylene, poly(L-lactic acid), and polyoxymethylene and are compared with those obtained from isothermal kinetic analysis; a good agreement in both is seen.
Resumo:
A study has been made of the differential thermal analysis of (i) potassium perchlorate in powdered form, (ii) potassium perchlorate in pelletized form, (iii) potassium perchlorate recrystallized from liquid NH3, and (iv) potassium perchlorate preheated for 24 hours at 375°. Pretreatment of potassium perchlorate leads to a desensitization of both endothermic and exothermic processes. Additionally, the pretreatment tends to convert the symmetric exotherm into an asymmetric exotherm due to merging of the two exotherms. An analysis of the factors causing asymmetry in the exotherm has thrown fresh light on the mechanism of thermal decomposition of potassium perchlorate.
Resumo:
Thermal analysis of metal sulfate hydrazinates, MSO4·xN2H4 (I) (M=Mn, Co, Ni, Zn, Cd; x = 2–3), hydrazinium metal sulfates, (N2H5)2M(SO4)2 (II) (M=Mn, Cu, Zn, Cd), and N2H5LiSO4 have been studied using simultaneous TG-DTGDTA. Both types of complexes, I and II, decompose to the respective metal sulfates or a mixture of metal sulfide and sulfate.
Resumo:
Abstract is not available.
Resumo:
Thermal analysis of hydrazinium metal sulphates, (N2H5)2 M(SO4)-I, and their hydrazinates, (N2H5)2−M(SO4)23N2H4−II, whereM=Fe, Co and Ni have been investigated using thermogravimetry and differential thermal analysis. Type II compounds on heating decompose through an intermediate I and metal suphlate to the respective metal oxides.
Resumo:
Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.
Resumo:
A thermal model for a conventional biogas plant has been developed in order to understand the heat transfer from the slurry and the gas holder to the surrounding earth and air respectively. The computations have been performed for two conditions : (i) when the slurry is at an ambient temperature of 20°C, and (ii) when it is at 35°C, the optimum temperature for anaerobic fermentation. Under both these conditions, the gas holder is the major “culprit” with regard to heat losses from the biogas plant. The calculations provide an estimate for the heat which has to be supplied by external means to compensate for the net heat losses which occur if the slurry is to be maintained at 35°C. Even if this external supply of heat is realised through (the calorific value of) biogas, there is a net increase in the biogas output, and therefore a net benefit, by operating the plant at 35°C. At this elevated temperature, the cooling effect of adding the influent at ambient temperature is not insignificant. In conclusion, the results of the thermal analysis are used to define a strategy for operating biogas plants at optimum temperatures, or at higher temperatures than the ambient.
Resumo:
The synthesis and thermal analysis studies of several hydroxobridged homo and hetero trinuclear cobalt(III) complexes are reported. The complexes are of the type [M(H2O)(x) {(OH)(2)Co(en)(2)}(2)](SO4)(2). nH(2)O and [M(H2O)(x){(OH)(2)Co(NH3)(4)}(2)] (SO4)(2). nH(2)O where en denotes ethylenediamine and M =Co(II), Ni(II), Cu(II) and Zn(II) with x=0 for Cu(II), and 2 for other metal ions, and n =3, 4 or 5. The TG and DTA studies of these compounds show that one or more intermediate compounds are formed in each case before the metal oxides are produced.
Resumo:
Metalorganic complexes of copper have been synthesized by modifying the ligand in the beta-diketonate class of compounds. Detailed thermal analysis of several beta-diketonate complexes of copper has been carried out to evaluate their suitability as precursors for chemical vapor deposition (CVD). A comparison of their relative volatilities has been made by determining their sublimation rates at different temperatures. Thermal analyses of these complexes reveal significant differences among their volatilities and decomposition patterns.