966 resultados para Thermal and Elastic Properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+-doped TeO2-based oxysulfide glasses have been prepared in argon atmosphere in carbon crucibles. The thermal analysis and spectroscopic properties of Er (3+) have been considered in terms of sulfide influence. As a function of composition, we have principally measured optical absorption, spontaneous emission and lifetime measurements. Judd-Ofelt theory was introduced to calculate bandwidth and emission cross-section. The results show the product FVMM x sigma(c) increase from 476.8 8 to 635.04 10(-21) cm(2) nm evidently with the addition of 10 mol% PbS into tellurite glass, which indicates a perfect effect on spectra property of Er3+ ions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, melt blends of poly(butylene terephthalate) (PBT) with epoxy resin were characterized by dynamic mechanical analysis, differential scanning calorimetry, tensile testing, Fourier transform infrared spectroscopy, and wide-angle X-ray diffraction. The results indicate that the presence of epoxy resin influenced either the mechanical properties of the PBT/epoxy blends or the crystallization of PBT. The epoxy resin was completely miscible with the PBT matrix. This was beneficial to the improvement of the impact performance of the PBT/epoxy blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL), a saturated polyester, derived from ring-opening polymerization of epsilon-caprolactone, was chemically crosslinked with various amounts of benzoyl peroxide (BPO) by a two-step method by first evenly dispersing the BPO into the PCL matrix and then crosslinking at elevated temperature. The gel fraction increased with an increase in BPO content. The modified Charlesby-Pinner equation was used to calculate the ratio of chain scission and crosslinking. The results showed that both scission and crosslinking occurred, and that crosslinking predominated over scission. The number-average molecular weight between the crosslinks determined by the rubber elasticity theory using the hot set test showed a decrease with increasing BPO content. The melting temperature and crystallinity decreased with an increase in BPO content, and the crystallization temperature increased after crosslinking. Dynamic mechanical analysis results showed a decrease in the glass transition temperature as a result of chemical crosslinking of PCL. This was explained by the observed reduction in crystallinity and the increase in free volume due to restrictions in chain packing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m, Pa-3, and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418 A. These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394 GPa is also the highest among the considered space groups, slightly larger than previous value 358 GPa. The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal and crystalline properties of random copolymer of epsilon-caprolactone (CL) and 2,2-dimethyl trimethylene carbonate (DTC) prepared by lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) (La(OAr)(3)) have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and wide-angle X-ray diffraction (WAXD). Fox equation interprets the relationship between glass transition temperature (T-g) and copolymer compositions. T-g decreases from PDTC (16.7degreesC) to PCL (-65.1degreesC), reflecting the internal plasticizing effect of CL units on DTC units in the copolymers. The introduction of CL units to PDTC can effectively improve its heat resistance. Small amount of DTC (5% molar) in PCL chain improves the mechanical properties of the polymer, which had elongation of 1000, much higher than that of PCL (8.8).