938 resultados para Theil’s uncertainty coefficient
Resumo:
Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.
Resumo:
In this paper we present a global overview of the recent study carried out in Spain for the new hazard map, which final goal is the revision of the Building Code in our country (NCSE-02). The study was carried our for a working group joining experts from The Instituto Geografico Nacional (IGN) and the Technical University of Madrid (UPM) , being the different phases of the work supervised by an expert Committee integrated by national experts from public institutions involved in subject of seismic hazard. The PSHA method (Probabilistic Seismic Hazard Assessment) has been followed, quantifying the epistemic uncertainties through a logic tree and the aleatory ones linked to variability of parameters by means of probability density functions and Monte Carlo simulations. In a first phase, the inputs have been prepared, which essentially are: 1) a project catalogue update and homogenization at Mw 2) proposal of zoning models and source characterization 3) calibration of Ground Motion Prediction Equations (GMPE’s) with actual data and development of a local model with data collected in Spain for Mw < 5.5. In a second phase, a sensitivity analysis of the different input options on hazard results has been carried out in order to have criteria for defining the branches of the logic tree and their weights. Finally, the hazard estimation was done with the logic tree shown in figure 1, including nodes for quantifying uncertainties corresponding to: 1) method for estimation of hazard (zoning and zoneless); 2) zoning models, 3) GMPE combinations used and 4) regression method for estimation of source parameters. In addition, the aleatory uncertainties corresponding to the magnitude of the events, recurrence parameters and maximum magnitude for each zone have been also considered including probability density functions and Monte Carlo simulations The main conclusions of the study are presented here, together with the obtained results in terms of PGA and other spectral accelerations SA (T) for return periods of 475, 975 and 2475 years. The map of the coefficient of variation (COV) are also represented to give an idea of the zones where the dispersion among results are the highest and the zones where the results are robust.
Resumo:
Hydrophobicity as measured by Log P is an important molecular property related to toxicity and carcinogenicity. With increasing public health concerns for the effects of Disinfection By-Products (DBPs), there are considerable benefits in developing Quantitative Structure and Activity Relationship (QSAR) models capable of accurately predicting Log P. In this research, Log P values of 173 DBP compounds in 6 functional classes were used to develop QSAR models, by applying 3 molecular descriptors, namely, Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Number of Chlorine (NCl) and Number of Carbon (NC) by Multiple Linear Regression (MLR) analysis. The QSAR models developed were validated based on the Organization for Economic Co-operation and Development (OECD) principles. The model Applicability Domain (AD) and mechanistic interpretation were explored. Considering the very complex nature of DBPs, the established QSAR models performed very well with respect to goodness-of-fit, robustness and predictability. The predicted values of Log P of DBPs by the QSAR models were found to be significant with a correlation coefficient R2 from 81% to 98%. The Leverage Approach by Williams Plot was applied to detect and remove outliers, consequently increasing R 2 by approximately 2% to 13% for different DBP classes. The developed QSAR models were statistically validated for their predictive power by the Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross validation methods. Finally, Monte Carlo simulation was used to assess the variations and inherent uncertainties in the QSAR models of Log P and determine the most influential parameters in connection with Log P prediction. The developed QSAR models in this dissertation will have a broad applicability domain because the research data set covered six out of eight common DBP classes, including halogenated alkane, halogenated alkene, halogenated aromatic, halogenated aldehyde, halogenated ketone, and halogenated carboxylic acid, which have been brought to the attention of regulatory agencies in recent years. Furthermore, the QSAR models are suitable to be used for prediction of similar DBP compounds within the same applicability domain. The selection and integration of various methodologies developed in this research may also benefit future research in similar fields.
Resumo:
Sales growth and employment growth are the two most widely used growth indicators for new ventures; yet, sales growth and employment growth are not interchangeable measures of new venture growth. Rather, they are related, but somewhat independent constructs that respond differently to a variety of criteria. Most of the literature treats this as a methodological technicality. However, sales growth with or without accompanying employment growth has very different implications for managers and policy makers. A better understanding of what drives these different growth metrics has the potential to lead to better decision making. To improve that understanding we apply transaction cost economics reasoning to predict when sales growth will be or will not be accompanied by employment growth. Our results indicate that our predictions are borne out consistently in resource-constrained contexts but not in resource-munificent contexts.
Resumo:
Risks and uncertainties are inevitable in engineering projects and infrastructure investments. Decisions about investment in infrastructure such as for maintenance, rehabilitation and construction works can pose risks, and may generate significant impacts on social, cultural, environmental and other related issues. This report presents the results of a literature review of current practice in identifying, quantifying and managing risks and predicting impacts as part of the planning and assessment process for infrastructure investment proposals. In assessing proposals for investment in infrastructure, it is necessary to consider social, cultural and environmental risks and impacts to the overall community, as well as financial risks to the investor. The report defines and explains the concept of risk and uncertainty, and describes the three main methodology approaches to the analysis of risk and uncertainty in investment planning for infrastructure, viz examining a range of scenarios or options, sensitivity analysis, and a statistical probability approach, listed here in order of increasing merit and complexity. Forecasts of costs, benefits and community impacts of infrastructure are recognised as central aspects of developing and assessing investment proposals. Increasingly complex modelling techniques are being used for investment evaluation. The literature review identified forecasting errors as the major cause of risk. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. For risks that cannot be readily quantified, assessment techniques commonly include classification or rating systems for likelihood and consequence. The report outlines the system used by the Australian Defence Organisation and in the Australian Standard on risk management. After each risk is identified and quantified or rated, consideration can be given to reducing the risk, and managing any remaining risk as part of the scope of the project. The literature review identified use of risk mapping techniques by a North American chemical company and by the Australian Defence Organisation. This literature review has enabled a risk assessment strategy to be developed, and will underpin an examination of the feasibility of developing a risk assessment capability using a probability approach.
Resumo:
A study has been conducted to investigate current practices on decision-making under risk and uncertainty for infrastructure project investments. It was found that many European countries such as the UK, France, Germany including Australia use scenarios for the investigation of the effects of risk and uncertainty of project investments. Different alternative scenarios are mostly considered during the engineering economic cost-benefit analysis stage. For instance, the World Bank requires an analysis of risks in all project appraisals. Risk in economic evaluation needs to be addressed by calculating sensitivity of the rate of return for a number of events. Risks and uncertainties of project developments arise from various sources of errors including data, model and forecasting errors. It was found that the most influential factors affecting risk and uncertainty resulted from forecasting errors. Data errors and model errors have trivial effects. It was argued by many analysts that scenarios do not forecast what will happen but scenarios indicate only what can happen from given alternatives. It was suggested that the probability distributions of end-products of the project appraisal, such as cost-benefit ratios that take forecasting errors into account, are feasible decision tools for economic evaluation. Political, social, environmental as well as economic and other related risk issues have been addressed and included in decision-making frameworks, such as in a multi-criteria decisionmaking framework. But no suggestion has been made on how to incorporate risk into the investment decision-making process.
Resumo:
Purpose: Choosing the appropriate procurement system for construction projects is a complex and challenging task for clients particularly when professional advice has not been sought. To assist with the decision making process, a range of procurement selection tools and techniques have been developed by both academic and industry bodies. Public sector clients in Western Australia (WA) remain uncertain about the pairing of procurement method to bespoke construction project and how this decision will ultimately impact upon project success. This paper examines ‘how and why’ a public sector agency selected particular procurement methods. · Methodology/Approach: An analysis of two focus group workshops (with 18 senior project and policy managers involved with procurement selection) is reported upon · Findings: The traditional lump sum (TLS) method is still the preferred procurement path even though alternative forms such as design and construct, public-private-partnerships could optimize the project outcome. Paradoxically, workshop participants agreed that alternative procurement forms should be considered, but an embedded culture of uncertainty avoidance invariably meant that TLS methods were selected. Senior managers felt that only a limited number of contractors have the resources and experience to deliver projects using the nontraditional methods considered. · Research limitations/implications: The research identifies a need to develop a framework that public sector clients can use to select an appropriate procurement method. A procurement framework should be able to guide the decision-maker rather than provide a prescriptive solution. Learning from previous experiences with regard to procurement selection will further provide public sector clients with knowledge about how to best deliver their projects.
Resumo:
Information uncertainty which is inherent in many real world applications brings more complexity to the visualisation problem. Despite the increasing number of research papers found in the literature, much more work is needed. The aims of this chapter are threefold: (1) to provide a comprehensive analysis of the requirements of visualisation of information uncertainty and their dimensions of complexity; (2) to review and assess current progress; and (3) to discuss remaining research challenges. We focus on four areas: information uncertainty modelling, visualisation techniques, management of information uncertainty modelling, propagation and visualisation, and the uptake of uncertainty visualisation in application domains.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
One of the new challenges in aeronautics is combining and accounting for multiple disciplines while considering uncertainties or variability in the design parameters or operating conditions. This paper describes a methodology for robust multidisciplinary design optimisation when there is uncertainty in the operating conditions. The methodology, which is based on canonical evolution algorithms, is enhanced by its coupling with an uncertainty analysis technique. The paper illustrates the use of this methodology on two practical test cases related to Unmanned Aerial Systems (UAS). These are the ideal candidates due to the multi-physics involved and the variability of missions to be performed. Results obtained from the optimisation show that the method is effective to find useful Pareto non-dominated solutions and demonstrate the use of robust design techniques.
Resumo:
Introduction: Some types of antimicrobial-coated central venous catheters (A-CVC) have been shown to be cost-effective in preventing catheter-related bloodstream infection (CR-BSI). However, not all types have been evaluated, and there are concerns over the quality and usefulness of these earlier studies. There is uncertainty amongst clinicians over which, if any, antimicrobial-coated central venous catheters to use. We re-evaluated the cost-effectiveness of all commercially available antimicrobialcoated central venous catheters for prevention of catheter-related bloodstream infection in adult intensive care unit (ICU) patients. Methods: We used a Markov decision model to compare the cost-effectiveness of antimicrobial-coated central venous catheters relative to uncoated catheters. Four catheter types were evaluated; minocycline and rifampicin (MR)-coated catheters; silver, platinum and carbon (SPC)-impregnated catheters; and two chlorhexidine and silver sulfadiazine-coated catheters, one coated on the external surface (CH/SSD (ext)) and the other coated on both surfaces (CH/SSD (int/ext)). The incremental cost per qualityadjusted life-year gained and the expected net monetary benefits were estimated for each. Uncertainty arising from data estimates, data quality and heterogeneity was explored in sensitivity analyses. Results: The baseline analysis, with no consideration of uncertainty, indicated all four types of antimicrobial-coated central venous catheters were cost-saving relative to uncoated catheters. Minocycline and rifampicin-coated catheters prevented 15 infections per 1,000 catheters and generated the greatest health benefits, 1.6 quality-adjusted life-years, and cost-savings, AUD $130,289. After considering uncertainty in the current evidence, the minocycline and rifampicin-coated catheters returned the highest incremental monetary net benefits of $948 per catheter; but there was a 62% probability of error in this conclusion. Although the minocycline and rifampicin-coated catheters had the highest monetary net benefits across multiple scenarios, the decision was always associated with high uncertainty. Conclusions: Current evidence suggests that the cost-effectiveness of using antimicrobial-coated central venous catheters within the ICU is highly uncertain. Policies to prevent catheter-related bloodstream infection amongst ICU patients should consider the cost-effectiveness of competing interventions in the light of this uncertainty. Decision makers would do well to consider the current gaps in knowledge and the complexity of producing good quality evidence in this area.