937 resultados para The cancer genome atlas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die nahe verwandten T-box Transkriptionsfaktoren TBX2 und TBX3 werden in zahlreichen humanen Krebsarten überexprimiert, insbesondere in Brustkrebs und Melanomen. Die Überexpression von TBX2 und TBX3 hat verschiedene zelluläre Effekte, darunter die Unterdrückung der Seneszenz, die Förderung der Epithelialen-Mesenchymalen Transition sowie invasive Zellmotilität. Im Gegensatz dazu führt ein Funktionsverlust von TBX3 und der meisten anderen humanen T-box-Gene zu haploinsuffizienten Entwicklungsdefekten. Durch Sequenzierung des Exoms von Brustkrebsproben identifizierten Stephens et al. fünf verschiedene Mutationen in TBX3, welche allesamt die DNA-bindende T-box-Domäne betrafen. Die In-Frame-Deletion N212delN wurde zweimal gefunden. Aus der Anhäufung der Mutationen innerhalb der T-box-Domäne wurde geschlossen, dass TBX3 bei Brustkrebs ein Treibergen ist. Da Mutationen innerhalb der T-box-Domäne im Allgemeinen zu einem Funktionsverlust führen, aber die onkogene Aktivität von TBX3 meist auf eine Überexpression zurückzuführen ist, wurden die potentiellen Treibermutationen hinsichtlich einer verminderten oder gesteigerten TBX3-Funktion geprüft. Getestet wurden zwei In-Frame Deletionen, eine Missense- sowie eine Frameshift-Mutante bezüglich der DNA-Bindung in vitro und der Zielgen-Repression in Zellkultur. Zusätzlich wurde eine in silico Analyse der im The Cancer Genome Atlas (TCGA) gelisteten somatischen TBX-Brustkrebsmutationen durchgeführt. Sowohl die experimentelle als auch die in silico Analyse zeigten, dass die untersuchten Mutationen vorwiegend zum Verlust der TBX3-Funktion führen. Um den Mechanismus der Genrepression durch TBX3 besser zu verstehen, wurden weitere TBX3-Mutanten bezüglich ihrer Wirkung auf die p21-Promotoraktivität (p21-Luc-Reporter und endogene p21-Expression) analysiert. Wildtypische p21-Luc-Repression zeigten die zwei Mutationen S674A (Phosphorylierung) und D275K (SUMOylierung), welche posttranslationale Modifikationen verhindern, sowie die Interaktion mit dem Tumorsuppressor Rb1 unterbindende M302A/V304A-Mutation. Erstaunlicherweise war die endogene p21-Repression dieser Mutanten stärker als die des wildtypischen TBX3-Proteins. Alle drei Mutationen führten zu einer Stabilisierung des TBX3-Proteins. Die ursprünglich in Patienten mit Ulna-Mamma Syndrom identifizierte, DNA-bindungsdefekte Y149S-Mutante konnte weder p21-Luc noch endogenes p21 reprimieren. Mutationen in potentiellen Interaktionsdomänen für die Bindung der Co-Repressoren Groucho und C-terminalem Bindeprotein zeigten sowohl auf p21-Luc als auch auf endogenes p21-Gen wildtypische Repressoraktivität, so dass diese Co-Repressoren in COS-7-Zellen wahrscheinlich nicht an der Repression dieses Gens beteiligt sind. Da TBX2 und TBX3 interessante Ziele zur direkten Krebsbekämpfung darstellen, sollte ein zelluläres Reportersystem zur Identifikation TBX2-inhibierender, pharmakologisch aktiver Substanzen etabliert werden. Dazu sollte eine stabile Zelllinie mit vom p21-Promotor reguliertem d2EGFP-Reporter und Doxyzyklin-induzierbarem TBX2-Protein erzeugt werden, da ektopische Expression von TBX2 genetische Instabilität und Toxizität induzieren kann. In dieser Zelllinie sollte die TBX2-Expression zur Reduktion der d2EGFP-Fluoreszenz führen. Zur Erzeugung der Zelllinie wurden die folgenden drei Konstrukte Schritt-für-Schritt stabil in das Genom der Zielzelllinie COS-7 integriert: pEF1alpha-Tet3G, pTRE3G-TBX2 und p21-d2EGFP. Während die Herstellung der doppelt stabilen COS-7-Zelllinie gelang, scheiterte die Herstellung der dreifach stabilen Zelllinie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTRIBUTION OF ECTODOMAIN MUTATIONS IN EPIDERMAL GROWTH FACTOR RECEPTOR TO SIGNALING IN GLIOBLASTOMA MULTIFORME Publication No._________ Marta Rojas, M.S. Supervisory Professor: Oliver Bögler, Ph.D. The Cancer Genome Atlas (TCGA) has conducted a comprehensive analysis of a large tumor cohort and has cataloged genetic alterations involving primary sequence variations and copy number aberrations of genes involved in key signaling pathways in glioblastoma (GBM). This dataset revealed missense ectodomain point mutations in epidermal growth factor receptor (EGFR), but the biological and clinical significance of these mutations is not well defined in the context of gliomas. In our study, we focused on understanding and defining the molecular mechanisms underlying the functions of EGFR ectodomain mutants. Using proteomic approaches to broadly analyze cell signaling, including antibody array and mass spectrometry-based methods, we found a differential spectrum of tyrosine phosphorylation across the EGFR ectodomain mutations that enabled us to stratify them into three main groups that correlate with either wild type EGFR (EGFR) or the long-studied mutant, EGFRvIII. Interestingly, one mutant shared characteristics of both groups suggesting a continuum of behaviors along which different mutants fall. Surprisingly, no substantial differences were seen in activation of classical downstream signaling pathways such as Akt and S6 pathways between these classes of mutants. Importantly, we demonstrated that ectodomain mutations lead to differential tumor growth capabilities in both in vitro (anchorage independent colony formation) and in vivo conditions (xenografts). Our data from the biological characterization allowed us to categorize the mutants into three main groups: the first group typified by EGFRvIII are mutations with a more aggressive phenotype including R108K and A289T; a second group characterized by a less aggressive phenotype exemplified by EGFR and the T263P mutation; and a third group which shared characteristics from both groups and is exemplified by the mutation A289D. In addition, we treated cells overexpressing the mutants with various agents employed in the clinic including temozolomide, cisplatin and tarceva. We found that cells overexpressing the mutants in general displayed resistance to the treatments. Our findings yield insights that help with the molecular characterization of these mutants. In addition, our results from the drug studies might be valuable in explaining differential responses to specific treatments in GBM patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomics is expanding the horizons of epidemiology, providing a new dimension for classical epidemiological studies and inspiring the development of large-scale multicenter studies with the statistical power necessary for the assessment of gene-gene and gene-environment interactions in cancer etiology and prognosis. This paper describes the methodology of the Clinical Genome of Cancer Project in São Paulo, Brazil (CGCP), which includes patients with nine types of tumors and controls. Three major epidemiological designs were used to reach specific objectives: cross-sectional studies to examine gene expression, case-control studies to evaluate etiological factors, and follow-up studies to analyze genetic profiles in prognosis. The clinical groups included patients' data in the electronic database through the Internet. Two approaches were used for data quality control: continuous data evaluation and data entry consistency. A total of 1749 cases and 1509 controls were entered into the CGCP database from the first trimester of 2002 to the end of 2004. Continuous evaluation showed that, for all tumors taken together, only 0.5% of the general form fields still included potential inconsistencies by the end of 2004. Regarding data entry consistency, the highest percentage of errors (11.8%) was observed for the follow-up form, followed by 6.7% for the clinical form, 4.0% for the general form, and only 1.1% for the pathology form. Good data quality is required for their transformation into useful information for clinical application and for preventive measures. The use of the Internet for communication among researchers and for data entry is perhaps the most innovative feature of the CGCP. The monitoring of patients' data guaranteed their quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canine transmissible venereal tumor (CTVT) is the oldest known somatic cell lineage. It is a transmissible cancer that propagates naturally in dogs. We sequenced the genomes of two CTVT tumors and found that CTVT has acquired 1.9 million somatic substitution mutations and bears evidence of exposure to ultraviolet light. CTVT is remarkably stable and lacks subclonal heterogeneity despite thousands of rearrangements, copy-number changes, and retrotransposon insertions. More than 10,000 genes carry nonsynonymous variants, and 646 genes have been lost. CTVT first arose in a dog with low genomic heterozygosity that may have lived about 11,000 years ago. The cancer spawned by this individual dispersed across continents about 500 years ago. Our results provide a genetic identikit of an ancient dog and demonstrate the robustness of mammalian somatic cells to survive for millennia despite a massive mutation burden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The near completion of the Human Genome Project stands as a remarkable achievement, with enormous implications for both science and society. For scientists, it is the first step in a complex process that will lead to important advances in the diagnosis and treatment of many diseases. Society, meanwhile, must prevent genetic discrimination, and protect genetic privacy through appropriate legislation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic copy number aberrations (CNA) represent a mutation type encountered in the majority of cancer genomes. Here, we present the 2014 edition of arrayMap (http://www.arraymap.org), a publicly accessible collection of pre-processed oncogenomic array data sets and CNA profiles, representing a vast range of human malignancies. Since the initial release, we have enhanced this resource both in content and especially with regard to data mining support. The 2014 release of arrayMap contains more than 64,000 genomic array data sets, representing about 250 tumor diagnoses. Data sets included in arrayMap have been assembled from public repositories as well as additional resources, and integrated by applying custom processing pipelines. Online tools have been upgraded for a more flexible array data visualization, including options for processing user provided, non-public data sets. Data integration has been improved by mapping to multiple editions of the human reference genome, with the majority of the data now being available for the UCSC hg18 as well as GRCh37 versions. The large amount of tumor CNA data in arrayMap can be freely downloaded by users to promote data mining projects, and to explore special events such as chromothripsis-like genome patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mapping and sequencing of the human genome has generated a large resource for answering questions about human disease. This achievement is akin in scientific importance to developing the periodic table of elements. Plastic surgery has always been at the frontier medical research. This resource will help us to improve our understanding on the many unknown physiological and pathogical conditions we deal with daily, such as wound heating keloid scar formation, Dupuytren's disease, rheumatoid arthritis, vascular malformation and carcinogenesis. We are primed in obtaining both disease and normal tissues to use this resource and applying it to clinical use. This review is about the human genome, the basis of gene expression profiling and how it will affect our clinical and research practices in the future and for those embarking on the use of this new technology as a research tool, we provide a brief insight on its limitations and pitfalls. (C) 2006 The British Association of Plastic Surgeons. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present a complete mtDNA sequence has been reported for only two hymenopterans, the Old World honey bee, Apis mellifera and the sawfly Perga condei. Among the bee group, the tribe Meliponini (stingless bees) has some distinction due to its Pantropical distribution, great number of species and large importance as main pollinators in several ecosystems, including the Brazilian rain forest. However few molecular studies have been conducted on this group of bees and few sequence data from mitochondrial genomes have been described. In this project, we PCR amplified and sequenced 78% of the mitochondrial genome of the stingless bee Melipona bicolor (Apidae, Meliponini). The sequenced region contains all of the 13 mitochondrial protein-coding genes, 18 of 22 tRNA genes, and both rRNA genes (one of them was partially sequenced). We also report the genome organization (gene content and order), gene translation, genetic code, and other molecular features, such as base frequencies, codon usage, gene initiation and termination. We compare these characteristics of M. bicolor to those of the mitochondrial genome of A. mellifera and other insects. A highly biased A+T content is a typical characteristic of the A. mellifera mitochondrial genome and it was even more extreme in that of M. bicolor. Length and compositional differences between M. bicolor and A. mellifera genes were detected and the gene order was compared. Eleven tRNA gene translocations were observed between these two species. This latter finding was surprising, considering the taxonomic proximity of these two bee tribes. The tRNA Lys gene translocation was investigated within Meliponini and showed high conservation across the Pantropical range of the tribe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete genome sequences of two Brazilian wild-type rabies viruses (RABV), a BR-DR1 isolate from a haematophagous bat (Desmodus rotundus) and a BR-AL1 isolate from a frugivorous bat (Artibeus lituratus), were determined. The genomes of the BR-DR1 and RR-AL1 had 11,923 and 11,922 nt, respectively, and both encoded the five standard genes of rhabdoviruses. The complete nucleotide sequence identity between the BR-DR1 and BR-AL1 isolates was 97%. The BR-DR1 and BR-AL1 isolates had some conserved functional sites revealed by the fixed isolates, whereas both isolates had unique amino acid substitutions in the antigenic region IV of the nucleocapsid gene. Therefore, it is speculated that both isolates were nearly identical in virologic character. According to our phylogenetic analysis based on the complete genomes, both isolates belonged to genotype 1, and to the previously defined ""vampire bat-related RABV lineage"" which consisted of mainly D. rotundus- and A. lituratus- isolates; however, a branch pattern with high bootstrap values suggested that BR-DR1 was more closely related to the 9001FRA isolate, which was collected from a dog bitten by a bat in French Guiana, than to BR-AL1. This result suggests that the vampire bat-related RABV lineage includes Brazilian vampire bat and Brazilian frugivorous bat RABV and is further divided into Brazilian vampire bat and Brazilian frugivorous bat RABV sub-lineages. The phylogenetic analysis based on the complete genomes was valuable in discriminating among very closely related isolates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here the sequence of the mitochondrial genome of the basidiomycete phytopathogenic hemibiotrophic fungus Moniliophthora perniciosa, causal agent of the Witches` Broom Disease in Theobroma cacao. The DNA is a circular molecule of 109103 base pairs, with 31.9 % GC, and is the largest sequenced so far. This size is due essentially to the presence of numerous non-conserved hypothetical ORFs. It contains the 14 genes coding for proteins involved in the oxidative phosphorylation, the two rRNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 26 tRNA genes that recognize codons for all amino acids. Seven homing endonucleases are located inside introns. Except atp8, all conserved known genes are in the same orientation. Phylogenetic analysis based on the cox genes agrees with the commonly accepted fungal taxonomy. An uncommon feature of this mitochondrial genome is the presence of a region that contains a set of four, relatively small, nested, inverted repeats enclosing two genes coding for polymerases with an invertron-type structure and three conserved hypothetical genes interpreted as the stable integration of a mitochondrial linear plasmid. The integration of this plasmid seems to be a recent evolutionary event that could have implications in fungal biology. This sequence is available under GenBank accession number AY376688. (c) 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is characterized by a block in differentiation and accumulation of promyelocytes in the bone marrow and blood. The majority of APL patients harbor the t(15: 17) translocation leading to expression of the fusion protein promyelocytic-retinoic acid receptor alpha. Treatment with retinoic acid leads to degradation of promyelocytic-retinoic acid receptor alpha protein and disappearance of leukemic cells; however, 30% of APL patients relapse after treatment. One potential mechanism for relapse is the persistence of cancer ""stem"" cells in hematopoietic organs after treatment. Using a novel sorting strategy we developed to isolate murine myeloid cells at distinct stages of differentiation, we identified a population of committed myeloid cells (CD34(+), c-kit(+), Fc gamma RIII/II(+), Gr1(int)) that accumulates in the spleen and bone marrow in a murine model of APL. We observed that these cells are capable of efficiently generating leukemia in recipient mice, demonstrating that this population represents the APL cancer-initiating cell. These cells down-regulate the transcription factor CCAAT/enhancer binding protein alpha (C/EBP alpha) possibly through a methylation-dependent mechanism, indicating that C/EBP alpha deregulation contributes to transformation of APL cancer-initiating cells. Our findings provide further understanding of the biology of APL by demonstrating that a committed transformed progenitor can initiate and propagate the disease. (Blood. 2009; 114: 5415-5425)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% AST). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.