930 resultados para Tetrahydrofolate Dehydrogenase
Resumo:
Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c(550). Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxiclases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E-m,E-8 (Fe-III/II) +177 mV; E-m,E-8 (Mo-VI/V) +211 mV and E(m,)8 (Mo-V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (K-m) of 26(l) muM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.
Resumo:
Sulfite dehydrogenase (SDH) from Starkeya novella, a sulfite-oxidizing molybdenum-containing enzyme, has a novel tightly bound αβ-heterodimeric structure in which the Mo cofactor and the c-type heme are located on different subunits. Flash photolysis studies of intramolecular electron transfer (IET) in SDH show that the process is first-order, independent of solution viscosity, and not inhibited by sulfate, which strongly indicates that IET in SDH proceeds directly through the protein medium and does not involve substantial movement of the two subunits relative to each other. The IET results for SDH contrast with those for chicken and human sulfite oxidase (SO) in which the molybdenum domain is linked to a b-type heme domain through a flexible loop, and IET shows a remarkable dependence on sulfate concentration and viscosity that has been ascribed to interdomain docking. The results for SDH provide additional support for the interdomain docking hypothesis in animal SO and clearly demonstrate that dependence of IET on viscosity and sulfate is not an inherent property of all sulfite-oxidizing molybdenum enzymes.
Resumo:
Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD(+) as the electron acceptor. R. capsulatus XDH forms an (alphabeta)(2) heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds; however, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. Here we demonstrate electrocatalytic activity of the recombinant enzyme, expressed in Escherichia coli, while immobilized on an edge plane pyrolytic graphite working electrode. Furthermore, we have determined all redox potentials of the four cofactors (Mo-VI/V, Mo-V/IV, FAD/FADH, FADH/FADH(2) and two distinct [2Fe-2S](2+/+) clusters) using a combination of potentiometric and voltammetric methods. A novel feature identified in catalytic voltammetry of XDH concerns the potential for the onset of catalysis (ca. 400 mV), which is at least 600 mV more positive than that of the highest potential cofactor. This unusual observation is explained on the basis of a pterin-associated oxidative switch during voltammetry that precedes catalysis.
Resumo:
The Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic defect in the world. The most common clinical manifestations are acute hemolytic anemia associated with drugs, infections, neonatal jaundice and hemolytic non-spherocytic chronic anemia. The main aim of this study was to determine the frequency of major genetic variants of G6PD leading to enzyme deficiency in children from 0 to 14 years at a Pediatric Hospital in Luanda, Angola. A cross-sectional and descriptive analytical study covered a total of 194 children aged from 0 to 14 years, of both genders and hospitalized at the Pediatric Hospital David Bernardino, Luanda between November and December, 2011. The G202A, A376G and C563T mutations of the G6PD gene were determined by real-time PCR with Taqman probes. The disabled A-/A- genotype was detected in 10 girls (10.9%). Among the boys, 21 (20.6%) presented the genotype A-. Considering all the samples, the A- variant was observed in 22.4% of cases. The Mediterranean mutation was not detected in the Angolan sample. Furthermore, no association was found between genotype and anemia, nutritional state and mucosa color. A significant association, however, was observed with jaundice. Based on the results obtained, there is a clear need to identify those with the disabled genotype in the Angolan population in order to avoid cases of drug-induced anemia, particularly in the treatment of malaria, so prevalent in Angola.
Resumo:
The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05) for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s.), respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent) binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01) for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01) before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1 female) were also studied. The G6PD and glutathione reductase were partially activated, the change being more intense in males. On the basis of race and of the laboratory characteristics observed, it is possible to suggest that the G6PD deficiency of these individuals is of the African type and that the female is heterozygous for this deficiency. Analysis of the results as a whole permitted us to conclude that the methods proposed here were efficient for evaluating the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The latter is dependent on the pentose pathway, which generates NADPH, and on riboflavin, a FAD precursor vitamin.
Resumo:
J Biol Inorg Chem (2004) 9: 145–151 DOI 10.1007/s00775-003-0506-z
Resumo:
J. Am. Chem. Soc., 2004, 126 (28), pp 8614–8615 DOI: 10.1021/ja0490222
Resumo:
17β-hydroxysteroid dehydrogenase 10 (HSD10) deficiency is a rare X-linked inborn error of isoleucine catabolism. Although this protein has been genetically implicated in Alzheimer's disease pathogenesis, studies of amyloid-β peptide (Aβ) in patients with HSD10 deficiency have not been previously reported. We found, in a severely affected child with HSD10 deficiency, undetectable levels of Aβ in the cerebrospinal fluid, together with low expression of brain-derived neurotrophic factor, α-synuclein, and serotonin metabolites. Confirmation of these findings in other patients would help elucidating mechanisms of synaptic dysfunction in this disease, and highlight the role of Aβ in both early and late periods of life.
Resumo:
The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females) aged 17 to 58 years. Twenty one (53.84%) of the patients presented a slow acetylatingphenotype and 18(46.16%) a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD) acti vity was decreased in 5(23.80%) slow acetylators and in 4(22.22%) fast acetylators. Glutathione reductase activity was decreased in 14 (66.66%) slow acetylators and in 12 (66.66%) fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p < 0.02). Analysis of the resultspermitted us to conclude that serum sulfadoxin levels are related to the acetylatorphenotype. Furthermore, sulfadoxin levels were always above 50 µg/ml, a value considered therapeutic. Glutathione reductase deficiency observed in 66% of patients may be related to the intestinal malabsorption of nutrients, among them riboflavin, a FAD precursor vitamin, inpatients with paracoceidioidomycosis.
Resumo:
A malária é reconhecida como uma das principais forças selectivas a actuar na história recente no genoma humano. Inúmeros polimorfismos genéticos têm sido descritos como protectores contra a gravidade da malária, como o alelo HbS (designado de traço falciforme) e o alelo G6PD A- (associado à deficiência de G6PD). Mais recentemente, também a deficiência de PK foi associada com a protecção contra a malária. Evidências desta associação foram obtidas em estudos com modelos de roedor e estudos in vitro utilizando GV humanos deficientes em PK. Até à data, não foram obtidos dados em populações humanas que revelem esta associação: ainda não foi identificada uma variante de PK com uma prevalência elevada em regiões endémicas de malária e não foram identificadas marcas de selecção na região do gene que codifica para a PK (gene PKLR). Além disso, os mecanismos subjacentes à protecção contra a malária por deficiências enzimáticas dos GV não estão bem esclarecidos. Assim, os objectivos do presente estudo foram: investigar os polimorfismos genéticos humanos com associação com a malária em Cabo Verde; pesquisar marcas de selecção da malária na região do gene PKLR em populações Africanas; determinar a frequência da deficiência em PK e identificar uma eventual variante da enzima que possa estar sob selecção positiva em regiões endémicas de malária; avaliar o efeito das duas deficiências enzimáticas (PK e G6PD) na invasão e maturação do parasita em culturas in vitro de Plasmodium usando GV normais e deficientes; e analisar o perfil proteómico de GV infectados e não infectados, normais e com deficiência (em PK e G6PD), bem como de parasitas isolados de GV tanto deficientes como normais. Em Cabo Verde (área epidémica), não foram identificadas marcas de selecção pela malária, através da análise dos vários polimorfismos. No entanto, quando a análise foi realizada em dois países endémicos (Angola e Moçambique), foram detectadas várias marcas de selecção: a genotipagem de microssatélites (STRs) e polimorfismos de base única (SNPs) localizados na vizinhança do gene PKLR revelou uma diferenciação consideravelmente maior entre as populações Africana e Europeia (Portuguesa), do que a diferenciação determinada aquando da utilização de marcadores genéticos neutros. Além disso, uma região genómica de maior amplitude apresentou um Desequilíbrio de Ligação (LD) significativo no grupo de malária não grave (e não no grupo de malária grave), sugerindo que a malária poderá estar a exercer pressão selectiva sobre a região do genoma humano que envolve o gene PKLR. No estudo que incidiu na determinação da prevalência da deficiência de PK no continente Africano (realizado em Moçambique), esta revelou-se elevada - 4,1% - sendo o valor mais elevado descrito até ao momento a nível mundial para esta enzimopatia. Na pesquisa de mutações que pudessem estar na causa deste fenótipo (baixa actividade de PK), foi identificada uma mutação não sinónima 829G>A (277Glu>Lys), significativamente associada à baixa actividade enzimática. Esta mutação foi também identificada em Angola, São Tomé e Príncipe e Guiné Equatorial, onde a frequência de portadores heterozigóticos foi entre 2,6 e 6,7% (valores que se encontram entre os mais elevados descritos globalmente para mutações associadas à deficiência em PK). Não foi possível concluir acerca da associação entre a deficiência de PK e o grau de severidade da malária e da associação entre o alelo 829A e a mesma, devido ao baixo número de amostras. Os resultados dos ensaios de invasão/maturação do parasita sugeriram que, nos GV com deficiência de PK ou G6PD, a invasão (onde está envolvida a membrana do GV hospedeiro e o complexo apical do parasita) é mais relevante para a eventual protecção contra a malária do que a maturação. Os resultados da análise proteómica revelaram respostas diferentes por parte do parasita nas duas condições de crescimento (GV com deficiência de PK e GV com deficiência de G6PD). Esta resposta parece ser proporcional à gravidade da deficiência enzimática. Nos parasitas que cresceram em GV deficientes em G6PD (provenientes de um indivíduo assintomático), a principal alteração observada (relativamente às condições normais) foi o aumento do número de proteínas de choque térmico e chaperones, mostrando que os parasitas responderam às condições de stress oxidativo, aumentando a expressão de moléculas de protecção. Nos parasitas que cresceram em condições de deficit de PK (GV de indivíduo com crises hemolíticas regulares, dependente de transfusões sanguíneas), houve alteração da expressão de um maior número de proteínas (relativamente ao observado em condições normais), em que a maioria apresentou uma repressão da expressão. Os processos biológicos mais representados nesta resposta do parasita foram a digestão da hemoglobina e a troca de proteínas entre hospedeiro e parasita/remodelação da superfície do GV. Além disso, uma elevada percentagem destas proteínas com expressão alterada está relacionada com as fendas de Maurer, que desempenham um papel importante na patologia da infecção malárica. É colocada a hipótese de que a protecção contra a malária em GV deficientes em PK está relacionada com o processo de remodelação da membrana dos GV pelo parasita, o que pode condicionar a invasão por novos parasitas e a própria virulência da malária. Os resultados da análise do proteoma dos GV contribuirão para confirmar esta hipótese.
Resumo:
Magdeburg, Univ., Med. Fak., Diss., 2011
Resumo:
Experiments for the investigation of dehydrogenase activity of washed cells of a strains of Br. abortus and another of Br. suis in presence of different single added substrates are reported. The activity was measured as the amount of formazan produced by the reduction of 2, 3, 5-triphenyltetrazolum chloride acting as a hydrogen ions acceptor, at pH 7.0. In a general manner the dehydrogenase activity of Br. suis was much more intense than that of Br. abortus (fig. 5). In the conditions of the experiments Br. abortus oxidized L-arabinose, D-galactose, D-glucose, glycerol, D-xylose, DL-alanine, D-fructose, and D-sorbitol. Brucella suis oxidized D-xylose, L-arabinose, D-glucose, D-galactose, DL-alanine, sodium acetate, maltose, glycine, D-fructose, and D-sorbitol. Glycerol was oxidized by Br. abortus but its oxidation by Br. suir was very slight. Sodium acetate and maltose were intensely oxidized by Br. suir but not by Br. abortus. The sites of more intense enzymatic acitivity were seen as small red colored round granules located in one pole of the cells.
Resumo:
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Resumo:
Aim: We have studied human adult cardiac progenitor cells (CPCs) based on high aldehyde dehydrogenase activity (ALDH-hi), a property shared by many stem cells across tissues and organs. However, the role of ALDH in stem cell function is poorly known. In humans, there are 19 ALDH isoforms with different biological activities. The isoforms responsible for the ALDH-hi phenotype of stem cells are not well known but they may include ALDH1A1 and ALDH1A3 isoforms, which function in all-trans retinoic acid (RA) cell signaling. ALDH activity has been shown to regulate hematopoietic stem cell function via RA. We aimed to analyze ALDH isoform expression and the role of RA in human CPC function. Methods: Human adult CPCs were isolated from atrial appendage samples from patients who underwent heart surgery for coronary artery or valve disease. Atrial samples were either cultured as primary explants or enzymatically digested and sorted for ALDH activity by FACS. ALDH isoforms were determined by qRT-PCR. Cells were cultured in the presence or absence of the specific ALDH inhibitor DEAB, with or without RA. Induction of cardiac-specific genes in cells cultured in differentiation medium was measured by qRT-PCR. Results: While ALDH-hi CPCs grew in culture and could be expanded, ALDH-low cells grew poorly. CPC isolated as primary explant outgrowths expressed high levels of ALDH1A3 but not of other isoforms. CPCs isolated from cardiospheres expressed relatively high levels of all the 11 isoforms tested. In contrast, expanded CPCs and cardiosphere-derived cells expressed low levels of all ALDH isoforms. DEAB inhibited CPC growth in a dose-dependent manner, whereas RA rescued CPC growth in the presence of DEAB. In differentiation medium, ALDH-hi CPCs expressed approximately 300-fold higher levels of cardiac troponin T compared with their ALDH-low counterparts. Conclusions: High ALDH activity identifies human adult cardiac cells with high growth and cardiomyogenic potential. ALDH1A3 and, possibly, ALDH1A1 isoforms account for high ALDH activity and RA-mediated regulation of CPC growth.
Resumo:
Anabolic androgenic steroids (AAS) are testosterone derivatives used either clinically, in elite sports, or for body shaping with the goal to increase muscle size and strength. Clinically developed compounds and nonclinically tested designer steroids often marketed as food supplements are widely used. Despite the considerable evidence for various adverse effects of AAS use, the underlying molecular mechanisms are insufficiently understood. Here, we investigated whether some AAS, as a result of a lack of target selectivity, might inhibit 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2)-dependent inactivation of glucocorticoids. Using recombinant human 11β-HSD2, we observed inhibitory effects for several AAS. Whereas oxymetholone, oxymesterone, danazol, and testosterone showed medium inhibitory potential, fluoxymesterone was a potent inhibitor of human 11β-HSD2 (half-maximal inhibitory concentration [IC(50)] of 60-100nM in cell lysates; IC(50) of 160nM in intact SW-620, and 530nM in MCF-7 cells). Measurements with rat kidney microsomes and lysates of cells expressing recombinant mouse 11β-HSD2 revealed much weaker inhibition by the AAS tested, indicating that the adverse effects of AAS-dependent 11β-HSD2 inhibition cannot be investigated in rats and mice. Furthermore, we provide evidence that fluoxymesterone is metabolized to 11-oxofluoxymesterone by human 11β-HSD2. Structural modeling revealed similar binding modes for fluoxymesterone and cortisol, supporting a competitive mode of inhibition of 11β-HSD2-dependent cortisol oxidation by this AAS. No direct modulation of mineralocorticoid receptor (MR) function was observed. Thus, 11β-HSD2 inhibition by fluoxymesterone may cause cortisol-induced MR activation, thereby leading to electrolyte disturbances and contributing to the development of hypertension and cardiovascular disease.