981 resultados para Test-problem Generator
Resumo:
Biological Crossover occurs during the early stages of meiosis. During this process the chromosomes undergoing crossover are synapsed together at a number of homogenous sequence sections, it is within such synapsed sections that crossover occurs. The SVLC (Synapsing Variable Length Crossover) Algorithm recurrently synapses homogenous genetic sequences together in order of length. The genomes are considered to be flexible with crossover only being permitted within the synapsed sections. Consequently, common sequences are automatically preserved with only the genetic differences being exchanged, independent of the length of such differences. In addition to providing a rationale for variable length crossover it also provides a genotypic similarity metric for variable length genomes enabling standard niche formation techniques to be utilised. In a simple variable length test problem the SVLC algorithm outperforms current variable length crossover techniques.
Synapsing variable length crossover: An algorithm for crossing and comparing variable length genomes
Resumo:
The Synapsing Variable Length Crossover (SVLC) algorithm provides a biologically inspired method for performing meaningful crossover between variable length genomes. In addition to providing a rationale for variable length crossover it also provides a genotypic similarity metric for variable length genomes enabling standard niche formation techniques to be used with variable length genomes. Unlike other variable length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC Algorithm recurrently "glues" or synapses homogenous genetic sub-sequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable length test problem the SVLC algorithm is shown to outperform current variable length crossover techniques. The SVLC algorithm is also shown to work in a more realistic robot neural network controller evolution application.
Resumo:
The synapsing variable-length crossover (SVLC algorithm provides a biologically inspired method for performing meaningful crossover between variable-length genomes. In addition to providing a rationale for variable-length crossover, it also provides a genotypic similarity metric for variable-length genomes, enabling standard niche formation techniques to be used with variable-length genomes. Unlike other variable-length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC algorithm recurrently "glues" or synapses homogenous genetic subsequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable-length test problem, the SVLC algorithm compares favorably with current variable-length crossover techniques. The variable-length approach is further advocated by demonstrating how a variable-length genetic algorithm (GA) can obtain a high fitness solution in fewer iterations than a traditional fixed-length GA in a two-dimensional vector approximation task.
Resumo:
An efficient algorithm is presented for the solution of the equations of isentropic gas dynamics with a general convex gas law. The scheme is based on solving linearized Riemann problems approximately, and in more than one dimension incorporates operator splitting. In particular, only two function evaluations in each computational cell are required. The scheme is applied to a standard test problem in gas dynamics for a polytropic gas
Resumo:
An efficient numerical method is presented for the solution of the Euler equations governing the compressible flow of a real gas. The scheme is based on the approximate solution of a specially constructed set of linearised Riemann problems. An average of the flow variables across the interface between cells is required, and this is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual square root averaging. The scheme is applied to a test problem for five different equations of state.
Resumo:
An efficient algorithm is presented for the solution of the steady Euler equations of gas dynamics. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme is applied to a standard test problem of flow down a channel containing a circular arc bump for three different mesh sizes.
Resumo:
A one-dimensional shock-reflection test problem in the case of slab, cylindrical or spherical symmetry is discussed for multi-component flows. The differential equations for a similarity solution are derived and then solved numerically in conjunction with the Rankine-Hugoniot shock relations.
2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over cathepsin L
Resumo:
Hologram quantitative structure-activity relationships (HQSAR) were applied to a data set of 41 cruzain inhibitors. The best HQSAR model (Q(2) = 0.77; R-2 = 0.90) employing Surflex-Sim, as training and test sets generator, was obtained using atoms, bonds, and connections as fragment distinctions and 4-7 as fragment size. This model was then used to predict the potencies of 12 test set compounds, giving satisfactory predictive R-2 value of 0,88. The contribution maps obtained from the best HQSAR model are in agreement with the biological activities of the study compounds. The Trypanosoma cruzi cruzain shares high similarity with the mammalian homolog cathepsin L. The selectivity toward cruzam was checked by a database of 123 compounds, which corresponds to the 41 cruzain inhibitors used in the HQSAR model development plus 82 cathepsin L inhibitors. We screened these compounds by ROCS (Rapid Overlay of Chemical Structures), a Gaussian-shape volume overlap filter that can rapidly identify shapes that match the query molecule. Remarkably, ROCS was able to rank the first 37 hits as being only cruzain inhibitors. In addition, the area under the curve (AUC) obtained with ROCS was 0.96, indicating that the method was very efficient to distinguishing between cruzain and cathepsin L inhibitors. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The robustness of mathematical models for biological systems is studied by sensitivity analysis and stochastic simulations. Using a neural network model with three genes as the test problem, we study robustness properties of synthesis and degradation processes. For single parameter robustness, sensitivity analysis techniques are applied for studying parameter variations and stochastic simulations are used for investigating the impact of external noise. Results of sensitivity analysis are consistent with those obtained by stochastic simulations. Stochastic models with external noise can be used for studying the robustness not only to external noise but also to parameter variations. For external noise we also use stochastic models to study the robustness of the function of each gene and that of the system.
Resumo:
E-learning is supposing an innovation in teaching, raising from the development of new technologies. It is based in a set of educational resources, including, among others, multimedia or interactive contents accessible through Internet or Intranet networks. A whole spectrum of tools and services support e-learning, some of them include auto-evaluation and automated correction of test-like exercises, however, this sort of exercises are very constrained because of its nature: fixed contents and correct answers suppose a limit in the way teachers may evaluation students. In this paper we propose a new engine that allows validating complex exercises in the area of Data Structures and Algorithms. Correct solutions to exercises do not rely only in how good the execution of the code is, or if the results are same as expected. A set of criteria on algorithm complexity or correctness in the use of the data structures are required. The engine presented in this work covers a wide set of exercises with these characteristics allowing teachers to establish the set of requirements for a solution, and students to obtain a measure on the quality of their solution in the same terms that are later required for exams.
Resumo:
Красимир Манев, Антон Желязков, Станимир Бойчев - В статията е представена имплементацията на последната фаза на автоматичен генератор на тестови данни за структурно тестване на софтуер, написан на обектно-ориентиран език за програмиране – генерирането на изходен код на тестващия модул. Някои детайли от имплементацията на останалите фази, които са важни за имплементацията на последната фаза, са представени първо. След това е описан и алгоритъмът за генериране на кода на тестващия модул.
Resumo:
Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. The simulation method is explained in detail. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling. Despite this unrealistic behavior the error maybe small enough to be accepted for specific applications. These results is a starting point start for achieving better results of inverse musculoskeletal simulations from a numerical point of view.
Resumo:
This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online office hours were found to be effective, and discussion sessions can be placed online as well. A model was created that explains 36.1% of student performance based on GPA, ACT Math score, grade in previous chemistry course, and attendance at various forms of discussion. Online exams have been created which test problem-solving skills and is instantly gradable. In these exams, students can submit answers until time runs out for different numbers of points. These facets were combined effectively to create an entirely online organic chemistry course which students prefer over the in-person alternative. Lastly, there is a vision for where online organic chemistry is going and what can be done to improve education for all.
An Estimation of Distribution Algorithm with Intelligent Local Search for Rule-based Nurse Rostering
Resumo:
This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.
An Estimation of Distribution Algorithm with Intelligent Local Search for Rule-based Nurse Rostering
Resumo:
This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.