868 resultados para Terrestrial habitats
Resumo:
Most amphibian species have biphasic life histories and undergo an ontogenetic shift from aquatic to terrestrial habitats. In deforested landscapes, streams and forest fragments are frequently disjunct, jeopardizing the life cycle of forest-associated amphibians with aquatic larvae. We tested the impact of habitat split-defined as human-induced disconnection between habitats used by different life-history stages of a species-on four forest-associated amphibian species in a severely fragmented landscape of the Brazilian Atlantic Forest. We surveyed amphibians in forest fragments with and without streams (referred to as wet and dry fragments, respectively), including the adjacent grass-field matrix. Our comparison of capture rates in dry fragments and nearby streams in the matrix allowed us to evaluate the number of individuals that engaged in high-risk migrations through nonforested habitats. Adult amphibians moved from dry fragments to matrix streams at the beginning of the rainy season, reproduced, and returned at the end of the breeding period. Juveniles of the year moved to dry fragments along with adults. These risky reproductive migrations through nonforested habitats that expose individuals to dehydration, predation, and other hazards may cause population declines in dry fragments. Indeed, capture rates were significantly lower in dry fragments compared with wet fragments. Declining amphibians would strongly benefit from investments in the conservation and restoration of riparian vegetation and corridors linking breeding and nonbreeding areas.
Resumo:
Arboreal and terrestrial habitats impose different constraints on tetrapod locomotion. We studied Polychrus acutirostris, a tree-dwelling lizard that also moves on the ground, in order to evaluate the effects of support incline and diameter on locomotion parameters. Limb movements of six specimens were filmed to quantify kinematic variables (velocity, stride frequency, stride length, and limb coordination) on distinct perch diameters (4.0, 1.5, 0.8 cm) and inclines (90, 45, and on level ground). The results show a notable slowness in arboreal habitat combined with a relatively fast locomotion when using the ground as temporary habitat. These animals developed walking trots mainly using lateral sequence. Non-symmetrical trots adopted at the highest velocities on the ground indicate difficulties of ""accommodation"" to the constraints imposed by this condition. Velocity generally decreases with the decreasing diameter, and with increasing incline, of the supports. Slowness, gaits favouring the body stability, elective role of the stride frequency in the modulation of the speed, and the role of the hindlimb in the force exchange to propel the body, constitute the main features of the locomotion pattern of P. acutirostris.
Resumo:
The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely habitat split- defined as human- induced disconnection between habitats used by different life history stages of a species- which forces forest- associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development ( the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Passive chambers are used to examine the impacts of summer warming in Antarctica but, so far, impacts occurring outside the growing season, or related to extreme temperatures, have not been reported, despite their potentially large biological significance. In this review, we synthesise and discuss the microclimate impacts of passive warming chambers (closed, ventilated and Open Top Chamber-OTC) commonly used in Antarctic terrestrial habitats, paying special attention to seasonal warming, during the growing season and outside, extreme temperatures and freeze-thaw events. Both temperature increases and decreases were recorded throughout the year. Closed chambers caused earlier spring soil thaw (8-28 days) while OTCs delayed soil thaw (3-13 days). Smaller closed chamber types recorded the largest temperature extremes (up to 20°C higher than ambient) and longest periods (up to 11 h) of above ambient extreme temperatures, and even OTCs had above ambient temperature extremes over up to 5 consecutive hours. The frequency of freeze-thaw events was reduced by ~25%. All chamber types experienced extreme temperature ranges that could negatively affect biological responses, while warming during winter could result in depletion of limited metabolic resources. The effects outside the growing season could be as important in driving biological responses as the mean summer warming. We make suggestions for improving season-specific warming simulations and propose that seasonal and changed temperature patterns achieved under climate manipulations should be recognised explicitly in descriptions of treatment effects.
Resumo:
Antarctica contains some of the most challenging environmental conditions on the planet due to freezing temperatures, prolonged winters and lack of liquid water. Whereas 99.7% of Antarctica is permanently covered by ice and snow, some coastal areas and mountain ridges have remained ice-free and are able to sustain populations of microinvertebrates. Tardigrades are one of the more dominant groups of microfauna in soil and limno-terrestrial habitats, but little is known of their diversity and distribution across Antarctica. Here, we examine tardigrades sampled from across an extensive region of continental Antarctica, and analyse and compare their partial mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences with those from the Antarctic Peninsula, maritime and sub-Antarctica, Tierra del Fuego and other worldwide locations in order to recognise operational taxonomic units (OTUs). From 439 new tardigrade COI sequences, we identified 98 unique haplotypes (85 from Antarctica) belonging to Acutuncus, Diphascon, Echiniscus, Macrobiotus, Milnesium and unidentified Parachela. Operational taxonomic units were delimited by Poisson tree processes and general mixed Yule coalescent methods, resulting in 58 and 55 putative species, respectively. Most tardigrades appear to be locally endemic (i.e. restricted to a single geographic region), but some (e.g. Acutuncus antarcticus (Richters, 1904)) are widespread across continental Antarctica. Our molecular results reveal: (i) greater diversity than has previously been appreciated with distinct OTUs that potentially represent undescribed species, and (ii) a lack of connectivity between most OTUs from continental Antarctica and those from other Antarctic geographical zones.
Resumo:
The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro-Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June–October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats. ^
Resumo:
The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro- Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June - October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats.
Resumo:
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.