1000 resultados para Ternary Linear Codes


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The techniques of algebraic geometry have been widely and successfully applied to the study of linear codes over finite fields since the early 1980's. Recently, there has been an increased interest in the study of linear codes over finite rings. In this thesis, we combine these two approaches to coding theory by introducing and studying algebraic geometric codes over rings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest projecte es presenta el desenvolupament d'un paquet d'aplicacions en l'entorn de programació matemàtica Magma, per al tractament dels codis anomenats Z2Z4-additius. Els codis Z2Z4-additius permeten representar alguns codis binaris, com a codis lineals en l'espai dels codis Z2Z4-additius. Aquest fet permetrà l'estudi de tota una sèrie de codis binaris no lineals que fins ara eren intractables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cryptosystem using linear codes was developed in 1978 by Mc-Eliece. Later in 1985 Niederreiter and others developed a modified version of cryptosystem using concepts of linear codes. But these systems were not used frequently because of its larger key size. In this study we were designing a cryptosystem using the concepts of algebraic geometric codes with smaller key size. Error detection and correction can be done efficiently by simple decoding methods using the cryptosystem developed. Approach: Algebraic geometric codes are codes, generated using curves. The cryptosystem use basic concepts of elliptic curves cryptography and generator matrix. Decrypted information takes the form of a repetition code. Due to this complexity of decoding procedure is reduced. Error detection and correction can be carried out efficiently by solving a simple system of linear equations, there by imposing the concepts of security along with error detection and correction. Results: Implementation of the algorithm is done on MATLAB and comparative analysis is also done on various parameters of the system. Attacks are common to all cryptosystems. But by securely choosing curve, field and representation of elements in field, we can overcome the attacks and a stable system can be generated. Conclusion: The algorithm defined here protects the information from an intruder and also from the error in communication channel by efficient error correction methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we prove the nonexistence of arcs with parameters (232, 48) and (233, 48) in PG(4,5). This rules out the existence of linear codes with parameters [232,5,184] and [233,5,185] over the field with five elements and improves two instances in the recent tables by Maruta, Shinohara and Kikui of optimal codes of dimension 5 over F5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose of this paper is to determine nq(k, d) for d = dk as nq(k, d) = gq(k, d) + 1 for q ≥ k with 3 ≤ k ≤ 8 except for (k, q) = (7, 7), (8, 8), (8, 9).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): E.4.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Codes C-1,...,C-M of length it over F-q and an M x N matrix A over F-q define a matrix-product code C = [C-1 (...) C-M] (.) A consisting of all matrix products [c(1) (...) c(M)] (.) A. This generalizes the (u/u + v)-, (u + v + w/2u + v/u)-, (a + x/b + x/a + b + x)-, (u + v/u - v)- etc. constructions. We study matrix-product codes using Linear Algebra. This provides a basis for a unified analysis of /C/, d(C), the minimum Hamming distance of C, and C-perpendicular to. It also reveals an interesting connection with MDS codes. We determine /C/ when A is non-singular. To underbound d(C), we need A to be 'non-singular by columns (NSC)'. We investigate NSC matrices. We show that Generalized Reed-Muller codes are iterative NSC matrix-product codes, generalizing the construction of Reed-Muller codes, as are the ternary 'Main Sequence codes'. We obtain a simpler proof of the minimum Hamming distance of such families of codes. If A is square and NSC, C-perpendicular to can be described using C-1(perpendicular to),...,C-M(perpendicular to) and a transformation of A. This yields d(C-perpendicular to). Finally we show that an NSC matrix-product code is a generalized concatenated code.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Error-correcting codes and matroids have been widely used in the study of ordinary secret sharing schemes. In this paper, the connections between codes, matroids, and a special class of secret sharing schemes, namely, multiplicative linear secret sharing schemes (LSSSs), are studied. Such schemes are known to enable multiparty computation protocols secure against general (nonthreshold) adversaries.Two open problems related to the complexity of multiplicative LSSSs are considered in this paper. The first one deals with strongly multiplicative LSSSs. As opposed to the case of multiplicative LSSSs, it is not known whether there is an efficient method to transform an LSSS into a strongly multiplicative LSSS for the same access structure with a polynomial increase of the complexity. A property of strongly multiplicative LSSSs that could be useful in solving this problem is proved. Namely, using a suitable generalization of the well-known Berlekamp–Welch decoder, it is shown that all strongly multiplicative LSSSs enable efficient reconstruction of a shared secret in the presence of malicious faults. The second one is to characterize the access structures of ideal multiplicative LSSSs. Specifically, the considered open problem is to determine whether all self-dual vector space access structures are in this situation. By the aforementioned connection, this in fact constitutes an open problem about matroid theory, since it can be restated in terms of representability of identically self-dual matroids by self-dual codes. A new concept is introduced, the flat-partition, that provides a useful classification of identically self-dual matroids. Uniform identically self-dual matroids, which are known to be representable by self-dual codes, form one of the classes. It is proved that this property also holds for the family of matroids that, in a natural way, is the next class in the above classification: the identically self-dual bipartite matroids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Finding large deletion correcting codes is an important issue in coding theory. Many researchers have studied this topic over the years. Varshamov and Tenegolts constructed the Varshamov-Tenengolts codes (VT codes) and Levenshtein showed the Varshamov-Tenengolts codes are perfect binary one-deletion correcting codes in 1992. Tenegolts constructed T codes to handle the non-binary cases. However the T codes are neither optimal nor perfect, which means some progress can be established. Latterly, Bours showed that perfect deletion-correcting codes have a close relationship with design theory. By this approach, Wang and Yin constructed perfect 5-deletion correcting codes of length 7 for large alphabet size. For our research, we focus on how to extend or combinatorially construct large codes with longer length, few deletions and small but non-binary alphabet especially ternary. After a brief study, we discovered some properties of T codes and produced some large codes by 3 different ways of extending some existing good codes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In previous work (Olshausen & Field 1996), an algorithm was described for learning linear sparse codes which, when trained on natural images, produces a set of basis functions that are spatially localized, oriented, and bandpass (i.e., wavelet-like). This note shows how the algorithm may be interpreted within a maximum-likelihood framework. Several useful insights emerge from this connection: it makes explicit the relation to statistical independence (i.e., factorial coding), it shows a formal relationship to the algorithm of Bell and Sejnowski (1995), and it suggests how to adapt parameters that were previously fixed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. This will damage some of the key properties of the space-time codes and can lead to substantial performance degradation. In this paper, we study the design of linear dispersion codes (LDCs) for such asynchronous cooperative communication networks. Firstly, the concept of conventional LDCs is extended to the delay-tolerant version and new design criteria are discussed. Then we propose a new design method to yield delay-tolerant LDCs that reach the optimal Jensen's upper bound on ergodic capacity as well as minimum average pairwise error probability. The proposed design employs stochastic gradient algorithm to approach a local optimum. Moreover, it is improved by using simulated annealing type optimization to increase the likelihood of the global optimum. The proposed method allows for flexible number of nodes, receive antennas, modulated symbols and flexible length of codewords. Simulation results confirm the performance of the newly-proposed delay-tolerant LDCs.