992 resultados para Teoria quàntica de camps
Resumo:
This undergraduate thesis aims formally define aspects of Quantum Turing Machine using as a basis quantum finite automata. We introduce the basic concepts of quantum mechanics and quantum computing through principles such as superposition, entanglement of quantum states, quantum bits and algorithms. We demonstrate the Bell's teleportation theorem, enunciated in the form of Deutsch-Jozsa definition for quantum algorithms. The way as the overall text were written omits formal aspects of quantum mechanics, encouraging computer scientists to understand the framework of quantum computation. We conclude our thesis by listing the Quantum Turing Machine's main limitations regarding the well-known Classical Turing Machines
Resumo:
This undergraduate thesis aims formally define aspects of Quantum Turing Machine using as a basis quantum finite automata. We introduce the basic concepts of quantum mechanics and quantum computing through principles such as superposition, entanglement of quantum states, quantum bits and algorithms. We demonstrate the Bell's teleportation theorem, enunciated in the form of Deutsch-Jozsa definition for quantum algorithms. The way as the overall text were written omits formal aspects of quantum mechanics, encouraging computer scientists to understand the framework of quantum computation. We conclude our thesis by listing the Quantum Turing Machine's main limitations regarding the well-known Classical Turing Machines
Resumo:
The Gross-Neveu model in an S^1 space is analyzed by means of a variational technique: the Gaussian effective potential. By making the proper connection with previous exact results at finite temperature, we show that this technique is able to describe the phase transition occurring in this model. We also make some remarks about the appropriate treatment of Grassmann variables in variational approaches.
Resumo:
A geometrical treatment of the path integral for gauge theories with first-class constraints linear in the momenta is performed. The equivalence of reduced, Polyakov, Faddeev-Popov, and Faddeev path-integral quantization of gauge theories is established. In the process of carrying this out we find a modified version of the original Faddeev-Popov formula which is derived under much more general conditions than the usual one. Throughout this paper we emphasize the fact that we only make use of the information contained in the action for the system, and of the natural geometrical structures derived from it.
Resumo:
A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold.
Resumo:
A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as functions of the incident wave frequency. The results are in good agreement with exact numerical simulations for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.
Resumo:
We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An approximate theoretical scheme is introduced to compute the velocity of the front and its diffusive wandering due to the presence of noise. The theoretical approach is based on a multiple scale analysis rather than on a small noise expansion and is confirmed with numerical simulations for a wide range of the noise intensity. We report on the possibility of noise sustained solutions with a continuum of possible velocities, in situations where only a single velocity is allowed without noise.
Resumo:
In arbitrary dimensional spaces the Lie algebra of the Poincaré group is seen to be a subalgebra of the complex Galilei algebra, while the Galilei algebra is a subalgebra of Poincar algebra. The usual contraction of the Poincar to the Galilei group is seen to be equivalent to a certain coordinate transformation.
Resumo:
For a few years now, the study of quantum field theories in partially compactified space-time manifolds has acquired increasing importance in several domains of quantum physics. Let me just mention the issues of dimensional reduction and spontaneous compactification, and the multiple questions associated with the study of quantum field theories in the presence of boundaries (like the Casimir effect) and on curved space-time (manifolds with curvature and nontrivial topology), a step towards quantum gravity.
Resumo:
We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.
Resumo:
A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker spacetime in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field, which consists basically of a nonlocal term due to gravitational particle creation and a noise term induced by the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the classical potential so that if the universe starts near a zero scale factor (initial singularity), it can make the transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it turns out to be comparable with the probability that the universe tunnels from ``nothing'' into an inflationary stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the spacetime should not be neglected in quantum cosmology.