998 resultados para Temperature-programmed Desorption
Resumo:
Iron, aluminium and mixed iron aluminium pillared clays have been prepared by partial hydrolysis method and doped with IO% Mo, V and Cr. The samples have been characterised by XRD, FTIR and surface area and pore Volume measurements. The surface acid site distribution has been determined by temperature programmed desorption of ammonia. Vanadia incorporated systems show maximum acidity. Benzylation of o-xylene has been done as probe reaction to test catalytic activity. Benzyl chloride is a superior benzylating agent compared to benzyl alcohol in activity and selectivity. Cent percent selectivity towards monobenzylated product is obtained in all the cases. Fe pillared systems exhibit maximum activity. The catalytic activities of the systems can be correlated with the amount of strong add sites. The effects of various reaction variables on the reaction have been studied. Presence of moisture has a diminishing effect on the reaction rate.
Resumo:
Iron and mixed iron aluminium pillared montmorillonites prepared by partial hydrolysis method was subjected to room temperature exchange with transition metals of the first series. The materials exhibit good structural as well as thermal stability. Exchanged metals were found to be present inside the porous network, in the environs of the pillars. Mixed pillaring resulted in the intercalation of Al 13 like polymers in which Al is partially substituted by Fe. The acidic structure was followed by temperature programmed desorption of ammonia and cumene cracking test reaction. Weak and medium sites overshadow the strong sites in all systems. However, exchange with metals increases the number of strong sites. The prepared materials are efficient catalysts for gas phase MTBE synthesis. The catalytic activity can be well correlated with the total amount of weak and medium acid sites.
Resumo:
The present work undertakes the preparation and physico-chemical characterisation of iron promoted sulphated zirconia (SZ) with different amounts of iron loading and their application to Friedel-Crafts benzoylation of benzene, toluene and xylene under different experimental conditions, XRD and laser Raman techniques reveal the stabilisation of the tetragonal phase of zirconia and the existence of iron in highly dispersed form as Fe203 on the catalyst surface. The surface acidic properties were determined by ammonia temperature programmed desorption (TPD) and perylene adsorption, The results were supported by the TGA studies after adsorption of pyridine and 2,6-dimethylpyridine (2,6-DMP), Strong Lewis acid sites on the surface, which are evident from TPD and perylene adsorption studies. explain the high catalytic activity of the systems towards benzoylation. The experimental results provide evidence for the truly heterogeneous nature of the reaction. The studies also establish the resistance to deactivation in the metal incorporated sulphated systems.
Resumo:
Chromia loaded sulfated titania has been synthesized via sol–gel route with different chromia loadings. These catalysts are characterized using conventional techniques such as XRD analysis, FTIR analysis, surface area and pore volume measurements, EDX, SEM and UV–Vis diffuse reflectance spectral analysis. Acidity is measured using spectrophotometric monitoring of adsorption of perylene, thermogravimetric desorption of 2,6-dimethylpyridine and temperature programmed desorption of ammonia. Activity studies are done in the liquid phase. It has been concluded that Lewis acid sites are responsible for the benzylation of arenes with benzyl chloride.
Resumo:
Cyclohexanol decomposition activity of supported vanadia catalysts is ascribed to the high surface area, total acidity and interaction between supported vanadia and the amorphous support. Among the supported catalysts, the effect of vanadia over various wt% V2O5 (2–10) loading indicates that the catalyst comprising of 6 wt% V2O5 exhibits higher acidity and decomposition activity. Structural characterization of the catalysts has been done by techniques like energy dispersive X-ray analysis, X-ray diffraction and BET surface area. Acidity of the catalysts has been measured by temperature programmed desorption using ammonia as a probe molecule and the results have been correlated with the activity of catalysts.
Resumo:
The aim of catalysis research is to apply the catalyst successfully in economically important reactions in an environmentally friendly way. The present work focuses on the modification of structural and surface properties of ceria and ceria-zirconia catalysts by the incorporation of transition metals. The applications of these catalysts in industrially important reactions like ethylbenzene oxidation, alkylation of aromatics are also investigated.Sol-gel method is effective for the preparation of transition metal modified ceria and ceria-zirconia mixed oxide since it produces catalyst with highly dispersed incorporated metal. Unlike that of impregnation method plugging of pores is not prominent for sol-gel derived catalyst materials. This prevents loss of surface area on metal modification as evident for BET surface area measurements.The powder X-ray diffraction analysis confirms the cubic structure of transition metal modified ceria and ceria-zirconia catalysts. The thermal stability is evident from TGA/DTA analysis. DR UV-vis spectra provide information on the coordination environment of the incorporated metal. EPR analysis ofCr, Mn and Cu modified ceria and a ceria-zirconia catalyst reveals the presence of different oxidation states of incorporated metal.Temperature programmed desorption of ammonia and thermogravimetric desorption of 2,6-dimethyl pyridine confirms the enhancement of acidity on metal incorporation. High a-methyl styrene selectivity in cumene cracking reaction implies the presence of comparatively more number of Lewis acid sites with some amount of Bronsted acid sites. The formation of cyclohexanone during cyclohexanol decomposition confirms the presence of basic sites on the catalyst surface.Mn and Cr modified catalysts show better activity towards ethylbenzene oxidation. A redox mechanism through oxometal pathway is suggested.All the catalysts were found to be active towards benzylation of toluene and a-xylene. The selectivity towards monoalkylated products remains almost 100%. The catalytic activity is correlated with the Lewis acidity of the prepared systems.The activity of the catalysts towards methylation of phenols depends on the strength acid sites as well as the redox properties of the catalysts. A strong dependence of methylation activity on the total acidity is illustrated.
Resumo:
Zur Modellierung von Vergasungs- und Verbrennungsprozessen zur energetischen Nutzung von Biomasse ist die Kenntnis von reaktionskinetischen Daten für die Sauerstoff-Oxidation von Biomassepyrolysaten erforderlich. Eine ausführliche Literaturübersicht zeigt den Stand der Forschung bezüglich der experimentellen Ermittlung von reaktionskinetischen Parametern für die Oxidation von Pyrolysaten aus Lignin, Cellulose und pflanzlicher Biomasse sowie der Suche nach einem plausiblen Reaktionsmechanismus für die Reaktion von Sauerstoff mit festen Kohlenstoffmaterialien. Es wird eine Versuchsanlage mit einem quasistationär betriebenen Differentialreaktor konstruiert, die eine Messung der Reaktionskinetik und der reaktiven inneren Oberfläche (RSA) für die Reaktion eines Pyrolysats aus Maispflanzen mit Sauerstoff ermöglicht. Die getrockneten und zerkleinerten Maispflanzen werden 7 Minuten lang bei 1073 K in einem Drehrohrofen pyrolysiert. Das Pyrolysat zeichnet sich vor allem durch seine hohe Porosität von über 0,9 und seinen hohen Aschegehalt von 0,24 aus. Die RSA wird nach der Methode der Messung von Übergangskinetiken (TK) bestimmt. Die Bestimmung der RSA erfolgt für die Reaktionsprodukte CO und CO2 getrennt, für die entsprechend ermittelten Werte werden die Bezeichnungen CO-RSA und CO2-RSA eingeführt. Die Abhängigkeit dieser Größen von der Sauerstoffkonzentration läßt sich durch eine Langmuir-Isotherme beschreiben, ebenso das leichte Absinken der CO-RSA mit der Kohlendioxidkonzentration. Über dem Abbrand zeigen sich unterschiedliche Verläufe für die CO-RSA, CO2-RSA und die innere Oberfläche nach der BET-Methode. Zur Charakterisierung der Oberflächenzwischenprodukte werden temperaturprogrammierte Desorptionsversuche (TPD) durchgeführt. Die Ergebnisse zeigen, daß eine Unterscheidung in zwei Kohlenstoff-Sauerstoff-Oberflächenkomplexe ausreichend ist. Die experimentellen Untersuchungen zum Oxidationsverlauf werden im kinetisch bestimmten Bereich durchgeführt. Dabei werden die Parameter Temperatur, Sauerstoff-, CO- und CO2-Konzentration variiert. Anhand der Ergebnisse der reaktionskinetischen Untersuchungen wird ein Reaktionsmechanismus für die Kohlenstoff-Sauerstoff-Reaktion entwickelt. Dieser Reaktionsmechanismus umfaßt 7 Elementarreaktionen, für welche die reaktionskinetischen Parameter numerisch ermittelt werden. Darüber hinaus werden reaktionskinetische Parameter für einfachere massenbezogene Reaktionsgeschwindigkeitsansätze berechnet und summarische Reaktionsgeschwindigkeitsansätze für die Bildung von CO und CO2 aus dem Reaktionsmechanismus hergeleitet.
Resumo:
A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 x 2)-S and c(2 x 2)-S surface structures formed by exposing the (1 x 1) phase of Ir{100} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 x 2)-S and 0.16 for the c(2 x 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 +/- 0.01 angstrom and 3.33 +/- 0.01 angstrom, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{100} transition metal surfaces: 0.09 angstrom for p(2 x 2)-S and 0.02 angstrom for c(2 x 2)-S structures. The (1 x 5) reconstruction, which is the most stable phase for clean Ir{100}, is completely lifted and a c(2 x 2)-S overlayer is formed after exposure to H,S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The co-adsorption of CO and O on the unreconstructed (1 x 1) phase of Ir {100} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{100} surface precovered with 0.5 ML O, a mixed c(4 x 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 x 10) periodicity. This overlayer consists of stripes with a local p(2 x 1)-O arrangement of oxygen atoms separated by stripes of uncovered It. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 x 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 x 2)-CO and p(2 x 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO, in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K. LEED IV structural analysis of the mixed c(4 x 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 angstrom away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 angstrom); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The adsorption of water and coadsorption with oxygen on the missing-row reconstructed Pt{110}-(1x2) surface was studied by using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy. Coadsorbed oxygen below saturation (<0.65 +/- 0.05 ML) leads to the formation of 014, which occupies sites near the ridge Pt atoms, In contrast to the more closely packed Pt{111} Surface, OH appears not to form hydrogen bonds with coadsorbed water molecules and is stable after the desorption of water tip to about 205 K (as determined by TPD). Because OH and atomic oxygen compete for adsorption sites, water dissociation is only observed for oxygen coverages below saturation. In the absence of coadsorbed oxygen, water stays intact at all temperatures and forms a strongly bound layer of 2 ML coverage oil the clean Pt{110}-(1x2) surface at temperatures between 140 and 175 K.
Resumo:
The adsorption and subsequent thermal chemistry of the acetyl-protected manganese porphyrin, [SA(C)](4)P-Mn(III)Cl on Ag(100) have been studied by high resolution XPS and temperature-programmed desorption. The deprotection event, leading to formation of the covalently bound thioporphyrin, has been characterized and the conditions necessary for removal of the axial chlorine ligand have been determined, thus establishing a methodology for creating tethered activated species that could serve as catalytic sites for delicate oxidation reactions. Surface-mediated acetyl deprotection occurs at 298 K, at which temperature porphyrin diffusion is limited. At temperatures above similar to 425 K porphyrin desorption, diffusion and deprotection occur and at >470 K the axial chlorine is removed.
Resumo:
Enantio-specific interactions on intrinsically chiral or chirally modified surfaces can be identified experimentally via comparison of the adsorption geometries of similar nonchiral and chiral molecules. Information about the effects of substrate-related and in interactions on the adsorption geometry of glycine, the only natural nonchiral amino acid, is therefore important for identifying enantio-specific interactions of larger chiral amino acids. We have studied the long- and short-range adsorption geometry and bonding properties of glycine on the intrinsically chiral Cu{531} surface with low-energy electron diffraction, near-edge X-ray absorption One structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. For coverages between 0.15 and 0.33 ML (saturated chemisorbed layer) and temperatures between 300 and 430 K, glycine molecules adsorb in two different azimuthal orientations, which are associated with adsorption sites on the {110} and {311} microfacets of Cu{531}. Both types of adsorption sites allow a triangular footprint with surface bonds through the two oxygen atoms and the nitrogen atom. The occupation of the two adsorption sites is equal for all coverages, which can be explained by pair formation due to similar site-specific adsorption energies and the possibility of forming hydrogen bonds between molecules on adjacent {110} and {311} sites. This is not the ease for alanine and points toward higher site specificity in the case of alanine, which is eventually responsible for the enantiomeric differences observed for the alanine system.
Resumo:
The adsorption of NO on Ir{100} has been studied as a function of NO coverage and temperature using temperature programmed reflection absorption infrared spectroscopy (TP-RAIRS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). After saturating the clean (1 x 5)-reconstructed surface with NO at 95 K. two N-2, desorption peaks are observed upon heating. The first N-2 peak at 346 K results from the decomposition of bridge-bonded NO, and the second at 475 K from the decomposition of atop-bonded NO molecules. NO decomposition is proposed to be the rate limiting step for both N-2 desorption states. For high NO coverages on the (1 x 5) surface, the narrow width of the first N-2 desorption peak is indicative of an autocatalytic process for which the parallel formation of N2O appears to be the crucial step. When NO is adsorbed on the metastable unreconstructed (1 x 1) phase of clean Ir{100} N-2 desorption starts at lower temperatures, indicating that this surface modification is more reactive. When a high coverage of oxygen, near 0.5 ML, is pre-adsorbed on the surface, the decomposition of NO is inhibited and mainly desorption of intact NO is observed.
Resumo:
A combination of photoelectron spectroscopy, temperature programmed desorption and low energy electron diffraction structure determinations have been applied to study the p(2 x 2) structures of pure hydrogen and co-adsorbed hydrogen and CO on Ni {111}. In agreement with earlier work atomic hydrogen is found to adsorb on fcc and hcp sites in the pure layer with H-Ni bond lengths of 1.74Angstrom. The substrate interlayer distances, d(12) = 2.05Angstrom and d(23) = 2.06Angstrom, are expanded with respect to clean Ni {111} with buckling of 0.04Angstrom in the first layer. In the co-adsorbed phase Co occupies hcp sites and only the hydrogen atoms on fcc sites remain on the surface. d(12) is even further expanded to 2.08Angstrom with buckling in the first and second layer of 0.06 and 0.02Angstrom, respectively. The C-O, C-Ni, and H-Ni bond lengths are within the range of values also found for the pure adsorbates.
Resumo:
Understanding the interaction of organic molecules with TiO2 surfaces is important for a wide range of technological applications. While density functional theory (DFT) calculations can provide valuable insight about these interactions, traditional DFT approaches with local exchange-correlation functionals suffer from a poor description of non-bonding van der Waals (vdW) interactions. We examine here the contribution of vdW forces to the interaction of small organic molecules (methane, methanol, formic acid and glycine) with the TiO2 (110) surface, based on DFT calculations with the optB88-vdW functional. The adsorption geometries and energies at different configurations were also obtained in the standard generalized gradient approximation (GGA-PBE) for comparison. We find that the optB88-vdW consistently gives shorter surface adsorbate-to-surface distances and slightly stronger interactions than PBE for the weak (physisorbed) modes of adsorption. In the case of strongly adsorbed (chemisorbed) molecules both functionals give similar results for the adsorption geometries, and also similar values of the relative energies between different chemisorption modes for each molecule. In particular both functionals predict that dissociative adsorption is more favourable than molecular adsorption for methanol, formic acid and glycine, in general agreement with experiment. The dissociation energies obtained from both functionals are also very similar, indicating that vdW interactions do not affect the thermodynamics of surface deprotonation. However, the optB88-vdW always predicts stronger adsorption than PBE. The comparison of the methanol adsorption energies with values obtained from a Redhead analysis of temperature programmed desorption data suggests that optB88-vdW significantly overestimates the adsorption strength, although we warn about the uncertainties involved in such comparisons.