885 resultados para Temperature--Physiological effect.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in atmospheric carbon dioxide (CO2) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.e., reducing transpiration of land plants). Here we compare the climate response to radiative and physiological effects of increased CO2 using the National Center for Atmospheric Research (NCAR) coupled Community Land and Community Atmosphere Model. In response to a doubling of CO2, the radiative effect of CO2 causes mean surface air temperature over land to increase by 2.86 ± 0.02 K (± 1 standard error), whereas the physiological effects of CO2 on land plants alone causes air temperature over land to increase by 0.42 ± 0.02 K. Combined, these two effects cause a land surface warming of 3.33 ± 0.03 K. The radiative effect of doubling CO2 increases global runoff by 5.2 ± 0.6%, primarily by increasing precipitation over the continents. The physiological effect increases runoff by 8.4 ± 0.6%, primarily by diminishing evapotranspiration from the continents. Combined, these two effects cause a 14.9 ± 0.7% increase in runoff. Relative humidity remains roughly constant in response to CO2-radiative forcing, whereas relative humidity over land decreases in response to CO2-physiological forcing as a result of reduced plant transpiration. Our study points to an emerging consensus that the physiological effects of increasing atmospheric CO2 on land plants will increase global warming beyond that caused by the radiative effects of CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non-uniform inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non-uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two experiments were carried out to study the effect of breeder age on incubation parameters (hatchability, eggshell thickness, egg surface temperature and chick weight). In Exp. 1, fertile eggs (30- and 60-wk-old breeders) were incubated at three different temperatures (36.8, 37.8 and 38.8 ºC). Eggshell surface temperature was measured by attaching a thermocouple to the shell and data were collected in a datalogger every ten minutes. This study was conducted according to a 3 x 2 factorial design (three temperatures and two breeder ages). Data revealed that eggshell surface temperature changed according to incubation temperature, with the main increase occurring between 10 and 13 days of incubation, and that the maximum increase in eggshell surface temperature was not higher than +0.6 ºC, irrespective of incubator temperature. The incubator temperature affected total incubation period and hatchability (%) at 38.8 ºC, independent of breeder age. Heavier eggs resulted in heavier chicks, irrespective of incubator temperature. In Exp 2, the eggs (30- and 60-wk-old breeders) were incubated at 37.8 ºC and eggs characteristics (weight, specific gravity, total hatchability and chicks weight) were evaluated according to a randomized experimental design. The data showed that breeder age affected eggshell thickness and chick weight (heavier eggs resulted in heavier chicks), but not specific gravity, eggshell surface temperature or hatchability. The findings of this study revealed that hatchability can be influenced by incubation temperature, but not by the breeder age. Breeder age can affect eggshell thickness, egg weight and eggshell surface temperature, but not specific gravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the penetration of an aggressive self-etching adhesive system at refrigerated and room temperatures into ground and unground enamel surfaces. Thirty extracted human teeth were used to measure adhesive penetration into enamel by light microscopy analysis (x400). The unground enamel surfaces were cleaned with pumice and water using a rotary dental brush. For each specimen, part of the unground enamel was manually ground and part was kept intact. A self-etch adhesive was evaluated for its ability to penetrate ground and unground enamel surfaces at room temperature (25 degrees C), at 30 minutes after removal from the refrigerator, and immediately after removal from the refrigerator (6 degrees C). Data were analyzed using variance and the Tukey test, which revealed significant differences in length of penetration of this material when applied on ground and unground enamel surfaces and between the different temperatures used (P > .05). The self-etching system used in this study had significantly lower penetration into unground enamel and at 6 degrees C (P < .05). No statistical difference was found between the interactions of these factors. It was concluded that the self-etching system produced the best penetration into ground enamel surface at room temperature (25 degrees C) and at 30 minutes after removing the specimens from the refrigerator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-miscible ionic liquids (ILs) may be salted out using kosmotropic salts such as potassium phosphate (K3PO4) to form salt-salt aqueous biphasic systems (ABS). The effect of temperature on these systems has been studied using phase diagrams and it is observed that the degree of binodal shift decreases (requiring lower IL and kosmotropic salt concentrations) with the increase of temperature following the trend [C(4)mim]Cl > [C(4)py]Cl > [C(4)mmim] Cl > [N-4444]Cl. This trend can be correlated with the decreasing hydrogen bonding abilities of each salt. The phase behavior was also interpreted on the basis of critical solution temperature behavior of pure aqueous ionic liquid solutions. Additionally, the distribution of alcohols in these systems was studied as a function of temperature and it was found that the distribution ratios did not change with changes in temperature. The Gibbs energy of transfer of a methylene group in these systems and correlation to tie-line length was also determined. It was concluded that while the miscibility of alcohols increases in the ILs with increasing temperature, phase divergence in the aqueous biphasic system decreases, and thus these competing forces tend to cancel each other out for small polar molecules. A comparison is provided for the response to temperature in the currently studied salt-salt systems and analogous ABS formed by the addition of hydrophilic polymers to kosmotropic salts (polymer-salt) or other polymers (polymer-polymer).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-beta-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans -> cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions have caused seawater temperature elevation and ocean acidification. In view of both phenomena are occurring simultaneously, their combined effects on marine species must be experimentally evaluated. The purpose of this study was to estimate the combined effects of seawater acidification and temperature increase on the energy budget of the thick shell mussel Mytilus coruscus. Juvenile mussels were exposed to six combined treatments with three pH levels (8.1, 7.7 and 7.3) * two temperatures (25 °C and 30 °C) for 14 d. We found that clearance rates (CRs), food absorption efficiencies (AEs), respiration rates (RRs), ammonium excretion rates (ER), scope for growth (SFG) and O:N ratios were significantly reduced by elevated temperature sometimes during the whole experiments. Low pH showed significant negative effects on RR and ER, and significantly increased O:N ratios, but showed almost no effects on CR, AE and SFG of M. coruscus. Nevertheless, their interactive effects were observed in RR, ER and O:N ratios. PCA revealed positive relationships among most physiological indicators, especially between SFG and CR under normal temperatures compared to high temperatures. PCA also showed that the high RR was closely correlated to an increasing ER with increasing pH levels. These results suggest that physiological energetics of juvenile M. coruscus are able to acclimate to CO2 acidification with a little physiological effect, but not increased temperatures. Therefore, the negative effects of a temperature increase could potentially impact the ecophysiological responses of M. coruscus and have significant ecological consequences, mainly in those habitats where this species is dominant in terms of abundance and biomass.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical investigation on mixed convection of a two-dimensional incompressible laminar flow over a horizontal flat plate with streamwise sinusoidal distribution of surface temperature has been performed for different values of Rayleigh number, Reynolds number and frequency of periodic temperature for constant Prandtl number and amplitude of periodic temperature. Finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm basis numerical scheme has been employed. The investigating parameters are the Rayleigh number, the Reynolds number and frequency of periodic temperature. The effect of variation of individual investigating parameters on mixed convection flow characteristics has been studied to observe the hydrodynamic and thermal behavior for while keeping the other parameters constant. The fluid considered in this study is air with Prandtl number 0.72. The results are obtained for the Rayleigh number range of 102 to 104, Reynolds number ranging from 1 to 100 and the frequency of periodic temperature from 1 to 5. Isotherms, streamlines, average and local Nusselt numbers are presented to show the effect of the different values of aforementioned investigating parameters on fluid flow and heat transfer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing’s thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25±6 years (mean ± sd), height 180±7 cm, body mass 79±9 kg, V˙O2max 57±6 ml.kg−1.min−1] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km⋅h−1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10–60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21°C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39°C in one of the 72 trials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing concentrations of atmospheric carbon dioxide (CO(2)) influence climate by suppressing canopy transpiration in addition to its well- known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO(2) concentrations using the National Center for Atmospheric Research's (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO(2) levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO(2) levels implies that incremental warming associated with the physiological effect of CO(2) will not abate at higher CO(2) concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO(2) emissions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO2 films were investigated. The refractive index of TiO2 films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO2 film is of anatase phase after annealing at 300 degrees C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. (C) 2012 Elsevier B.V. All rights reserved.