979 resultados para Temperature range
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.
Resumo:
The voltammetry for the reduction of oxygen at a microdisk electrode is reported in six commonly used RTILs: [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)dmim][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], and [N-6.2.2.2][NTf2], where [C(4)mim](+) is 1-butyl-3-methylimidazolium, [NTf2](-) is bis(trifluoromethanesulfonyl)imide, [C(4)mpyrr](+) is N-butyl-N-methylpyrrolidinium, [C(4)dmim](+) is 1-butyl-2,3-methylimidazolium, [BF4](-) is tetrafluoroborate, [PF6](-) is hexafluorophosphate, and [N-6.2.2.2](+) is n-hexyltriethylammonium at varying scan rates (50-4000 mV s(-1)) and temperatures (293-318 K). Diffusion coefficients, D, of oxygen are deduced at each temperature from potential-step chronoamperometry, and diffusional activation energies are calculated. Oxygen solubilities are also reported as a function of temperature. In the six ionic liquids, the Stokes-Einstein relationship (D proportional to eta(-1)) was found to apply only very approximately for oxygen. This is considered in relationship to the behavior of other diverse solutes in RTILs.
Resumo:
The thermal conductivities of 11 ionic liquids were determined, over the temperature range from 293 K to 353 K, at atmospheric pressure, using an apparatus based on the transient hot-wire method. For each of the ionic liquids studied, the thermal conductivities were found to be between (0.1 and 0.2) W.m(-1).K-1, with a slight decrease observed on increasing temperature. The uncertainty is estimated to be less than +/- 0.002 W.m(-1).K-1. In all cases, a linear equation was found to give a good fit to the data. The effects of water content and chloride content on the thermal conductivities of some of the ionic liquids were investigated. In each case, the thermal conductivities of the water + ionic liquid and chloride + ionic liquid binary mixtures were found to be less than the weighted average of the pure component thermal conductivities. This effect was adequately modeled using the Jamieson correlation. Chloride contamination at typical postsynthesis levels was found to have no significant effect on the thermal conductivities of the ionic liquid studied.
Resumo:
Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored.
Resumo:
We analyze the impact of stratospheric volcanic aerosols on the diurnal temperature range (DTR) over Europe using long-term subdaily station records. We compare the results with a 28-member ensemble of European Centre/Hamburg version 5.4 (ECHAM5.4) general circulation model simulations. Eight stratospheric volcanic eruptions during the instrumental period are investigated. Seasonal all- and clear-sky DTR anomalies are compared with contemporary (approximately 20 year) reference periods. Clear sky is used to eliminate cloud effects and better estimate the signal from the direct radiative forcing of the volcanic aerosols. We do not find a consistent effect of stratospheric aerosols on all-sky DTR. For clear skies, we find average DTR anomalies of −0.08°C (−0.13°C) in the observations (in the model), with the largest effect in the second winter after the eruption. Although the clear-sky DTR anomalies from different stations, volcanic eruptions, and seasons show heterogeneous signals in terms of order of magnitude and sign, the significantly negative DTR anomalies (e.g., after the Tambora eruption) are qualitatively consistent with other studies. Referencing with clear-sky DTR anomalies to the radiative forcing from stratospheric volcanic eruptions, we find the resulting sensitivity to be of the same order of magnitude as previously published estimates for tropospheric aerosols during the so-called “global dimming” period (i.e., 1950s to 1980s). Analyzing cloud cover changes after volcanic eruptions reveals an increase in clear-sky days in both data sets. Quantifying the impact of stratospheric volcanic eruptions on clear-sky DTR over Europe provides valuable information for the study of the radiative effect of stratospheric aerosols and for geo-engineering purposes.
Resumo:
Growing evidence suggests environmental change to be most severe across the semi-arid subtropics, with past, present and projected drying of the Mediterranean Basin posing a key multidisciplinary challenge. Consideration of a single climatic factor, however, often fails to explain spatiotemporal growth dynamics of drought-prone ecosystems. Here, we present annually resolved and absolutely dated ring width measurements of 871 Scots pines (Pinus sylvestris) from 18 individual plot sites in the Central Spanish Pinar Grande forest reserve. Although comprising tree ages from 6 to 175 years, this network correlates surprisingly well with the inverse May–July diurnal temperature range (r = 0.84; p < 0.00011956–2011). Ring width extremes were triggered by pressure anomalies of the North Atlantic Oscillation, and the long-term growth decline coincided with Iberian-wide drying since the mid-1970s. Climate model simulations not only confirm this negative trend over the last decades but also project drought to continuously increase over the 21st century. Associated ecological effects and socio-economic consequences should be considered to improve adaptation strategies of agricultural and forest management, as well as biodiversity conservation and ecosystem service.
Resumo:
Grand Canonical Monte Carlo simulations are used to reproduce the N₂/CO ratio ranging between 1.7 x 10⁻³ and 1.6 x 10⁻² observed in situ in the Jupiter-family comet 67 P/Churyumov-Gerasimenko (67 P) by the ROSINA mass spectrometer on board the Rosetta spacecraft. By assuming that this body has been agglomerated from clathrates in the protosolar nebula (PSN), simulations are developed using elaborated interatomic potentials for investigating the temperature dependence of the trapping within a multiple-guest clathrate formed from a gas mixture of CO and N₂ in proportions corresponding to those expected for the PSN. By assuming that 67 P agglomerated from clathrates, our calculations suggest the cometary grains must have been formed at temperatures ranging between ~ 31.8 and 69.9 K in the PSN to match the N₂/CO ratio measured by the ROSINA mass spectrometer. The presence of clathrates in Jupiter-family comets could then explain the potential N₂ depletion (factor of up to ~ 87 compared to the protosolar value) measured in 67 P/Churyumov-Gerasimenko.