915 resultados para Temperament and Atipical Behavior Scale


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study two YBa2Cu3O7−δ bulk superconductors were evaluated, with the aim of analyzing the influence of the processing method (TSMG and Bridgman) and the test temperature on their mechanical behavior. The relationship between their mechanical properties and fracture micromechanisms has also been studied. Both materials were tested at room and at service temperature. TPB tests were carried out to determine their mechanical behavior, strength and toughness. Moreover, one of the two materials, characterized by transversal microstructural anisotropy, was tested in two directions. Hardness of both materials at nano and micro scale was studied. The results show that the mechanical behavior of the materials is controlled by the defects and cracks that have been introduced during the processing of the materials. A good degree of agreement was found between the experimental crack defects detected by means of SEM and those gathered from the fracture mechanical analysis of the experimental data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was carried out to detect differences in locomotion and feeding behavior in lame (group L; n = 41; gait score ≥ 2.5) and non-lame (group C; n = 12; gait score ≤ 2) multiparous Holstein cows in a cross-sectional study design. A model for automatic lameness detection was created, using data from accelerometers attached to the hind limbs and noseband sensors attached to the head. Each cow's gait was videotaped and scored on a 5-point scale before and after a period of 3 consecutive days of behavioral data recording. The mean value of 3 independent experienced observers was taken as a definite gait score and considered to be the gold standard. For statistical analysis, data from the noseband sensor and one of two accelerometers per cow (randomly selected) of 2 out of 3 randomly selected days was used. For comparison between group L and group C, the T-test, the Aspin-Welch Test and the Wilcoxon Test were used. The sensitivity and specificity for lameness detection was determined with logistic regression and ROC-analysis. Group L compared to group C had significantly lower eating and ruminating time, fewer eating chews, ruminating chews and ruminating boluses, longer lying time and lying bout duration, lower standing time, fewer standing and walking bouts, fewer, slower and shorter strides and a lower walking speed. The model considering the number of standing bouts and walking speed was the best predictor of cows being lame with a sensitivity of 90.2% and specificity of 91.7%. Sensitivity and specificity of the lameness detection model were considered to be very high, even without the use of halter data. It was concluded that under the conditions of the study farm, accelerometer data were suitable for accurately distinguishing between lame and non-lame dairy cows, even in cases of slight lameness with a gait score of 2.5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined how individual differences in social understanding contribute to variability in early-appearing prosocial behavior. Moreover, potential sources of variability in social understanding were explored and examined as additional possible predictors of prosocial behavior. Using a multi-method approach with both observed and parent-report measures, 325 children aged 18-30 months were administered measures of social understanding (e.g., use of emotion words; self-understanding), prosocial behavior (in separate tasks measuring instrumental helping, empathic helping, and sharing, as well as parent-reported prosociality at home), temperament (fearfulness, shyness, and social fear), and parental socialization of prosocial behavior in the family. Individual differences in social understanding predicted variability in empathic helping and parent-reported prosociality, but not instrumental helping or sharing. Parental socialization of prosocial behavior was positively associated with toddlers' social understanding, prosocial behavior at home, and instrumental helping in the lab, and negatively associated with sharing (possibly reflecting parents' increased efforts to encourage children who were less likely to share). Further, socialization moderated the association between social understanding and prosocial behavior, such that social understanding was less predictive of prosocial behavior among children whose parents took a more active role in socializing their prosociality. None of the dimensions of temperament was associated with either social understanding or prosocial behavior. Parental socialization of prosocial behavior is thus an important source of variability in children's early prosociality, acting in concert with early differences in social understanding, with different patterns of influence for different subtypes of prosocial behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to identify the quality of life profile, overweight-obesity and sedentary behavior in a group of elementary and high school children of Guanacaste. 635 students participated in the study. The participants completed a protocol by which they were anthropometrically evaluated, and also filled up a questionnaire related to sedentary behavior and quality of life. In general, the findings reflected a prevalence of overweight and obesity of 13, 9%. The most important sedentary activities were, in descending order, the small screen (watching TV, video games, computer), and certain social and cultural activities. The self-reported quality of life index was within acceptable limits but not exceeding 80 points on a scale of 1-100. There was no significant relationship between the rate of the overall quality of life, overweight, obesity and some sedentary behaviors, although some anthropometric parameters like percentage of body fat and body weight showed significant correlation with sedentary behavior and specific aspects belonging to quality of life. The study provides valuable information to health authorities, directors of educational institutions and parents about key issues related to child development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Community and clinical data have suggested there is an association between trauma exposure and suicidal behavior (i.e., suicide ideation, plans and attempts). However, few studies have assessed which traumas are uniquely predictive of: the first onset of suicidal behavior, the progression from suicide ideation to plans and attempts, or the persistence of each form of suicidal behavior over time. Moreover, few data are available on such associations in developing countries. The current study addresses each of these issues. Methodology/Principal Findings: Data on trauma exposure and subsequent first onset of suicidal behavior were collected via structured interviews conducted in the households of 102,245 (age 18+) respondents from 21 countries participating in the WHO World Mental Health Surveys. Bivariate and multivariate survival models tested the relationship between the type and number of traumatic events and subsequent suicidal behavior. A range of traumatic events are associated with suicidal behavior, with sexual and interpersonal violence consistently showing the strongest effects. There is a dose-response relationship between the number of traumatic events and suicide ideation/attempt; however, there is decay in the strength of the association with more events. Although a range of traumatic events are associated with the onset of suicide ideation, fewer events predict which people with suicide ideation progress to suicide plan and attempt, or the persistence of suicidal behavior over time. Associations generally are consistent across high-, middle-, and low-income countries. Conclusions/Significance: This study provides more detailed information than previously available on the relationship between traumatic events and suicidal behavior and indicates that this association is fairly consistent across developed and developing countries. These data reinforce the importance of psychological trauma as a major public health problem, and highlight the significance of screening for the presence and accumulation of traumatic exposures as a risk factor for suicide ideation and attempt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Suicide is a leading cause of death worldwide. Mental disorders are among the strongest predictors of suicide; however, little is known about which disorders are uniquely predictive of suicidal behavior, the extent to which disorders predict suicide attempts beyond their association with suicidal thoughts, and whether these associations are similar across developed and developing countries. This study was designed to test each of these questions with a focus on nonfatal suicide attempts. Methods and Findings: Data on the lifetime presence and age-of-onset of Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) mental disorders and nonfatal suicidal behaviors were collected via structured face-to-face interviews with 108,664 respondents from 21 countries participating in the WHO World Mental Health Surveys. The results show that each lifetime disorder examined significantly predicts the subsequent first onset of suicide attempt (odds ratios [ORs] = 2.9-8.9). After controlling for comorbidity, these associations decreased substantially (ORs = 1.5-5.6) but remained significant in most cases. Overall, mental disorders were equally predictive in developed and developing countries, with a key difference being that the strongest predictors of suicide attempts in developed countries were mood disorders, whereas in developing countries impulse-control, substance use, and post-traumatic stress disorders were most predictive. Disaggregation of the associations between mental disorders and nonfatal suicide attempts showed that these associations are largely due to disorders predicting the onset of suicidal thoughts rather than predicting progression from thoughts to attempts. In the few instances where mental disorders predicted the transition from suicidal thoughts to attempts, the significant disorders are characterized by anxiety and poor impulse-control. The limitations of this study include the use of retrospective self-reports of lifetime occurrence and age-of-onset of mental disorders and suicidal behaviors, as well as the narrow focus on mental disorders as predictors of nonfatal suicidal behaviors, each of which must be addressed in future studies. Conclusions: This study found that a wide range of mental disorders increased the odds of experiencing suicide ideation. However, after controlling for psychiatric comorbidity, only disorders characterized by anxiety and poor impulse-control predict which people with suicide ideation act on such thoughts. These findings provide a more fine-grained understanding of the associations between mental disorders and subsequent suicidal behavior than previously available and indicate that mental disorders predict suicidal behaviors similarly in both developed and developing countries. Future research is needed to delineate the mechanisms through which people come to think about suicide and subsequently progress from ideation to attempts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: We compared temperament and character traits in children and adolescents with bipolar disorder (BP) and healthy control (HC) subjects. Method: Sixty nine subjects (38 BP and 31 HC), 8-17 years old, were assessed with the Kiddie Schedule for Affective Disorders and Schizophrenia-Present and Lifetime. Temperament and character traits were measured with parent and child versions of the Junior Temperament and Character Inventory. Results: BP subjects scored higher on novelty seeking, harm avoidance, and fantasy subscales, and lower on reward dependence, persistence, self-directedness, and cooperativeness compared to HC(all p < 0.007), by child and parent reports. These findings were consistent in both children and adolescents. Higher parent-rated novelty seeking, lower self-directedness, and lower cooperativeness were associated with co-morbid attention-deficit/hyperactivity disorder (ADHD). Lower parent-rated reward dependence was associated with co-morbid conduct disorder, and higher child-rated persistence was associated with co-morbid anxiety. Conclusions: These findings support previous reports of differences in temperament in BP children and adolescents and may assist in a greater understating of BP children and adolescents beyond mood symptomatology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reconsidered the Bell-Lavis model of liquid water and investigated its relation to its isotropic version, the antiferromagnetic Blume-Emery-Griffiths model on the triangular lattice. Our study was carried out by means of an exact solution on the sequential Husimi cactus. We show that the ground states of both models share the same topology and that fluid phases (gas and low- and high-density liquids) can be mapped onto magnetic phases (paramagnetic, antiferromagnetic, and dense paramagnetic, respectively). Both models present liquid-liquid coexistence and several thermodynamic anomalies. This result suggests that anisotropy introduced through orientational variables play no specific role in producing the density anomaly, in agreement with a similar conclusion discussed previously following results for continuous soft core,models. We propose that the presence of liquid anomalies may be related to energetic frustration, a feature common to both models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports on the structural change and rheological behavior of mixtures of macromolecular suspensions (guar and xanthan gums) in crossflow microfiltration processing. Mixtures in suspension of guar and xanthan gums at low concentrations (1,000 ppm) and different proportions were processed by microfiltration with membrane of nominal pore size of 0.4 mu m. The rheological behavior of the mixtures was investigated in rotational viscometers at two different temperatures, 25 and 40 C, at the beginning and at the end of each experiment. The shear stress (t) in function of the shear rate (gamma) was fitted and analyzed with the power-law model. All the mixtures showed flow behavior index values (n) lower than 1, characterizing non-Newtonian fluids (pseudoplastic). The samples of both mixtures and permeates were also analyzed by absorbency spectroscopy in infrared radiation. The absorbency analysis showed that there is good synergism between xanthan and guar gums without structure modifications or gel formation in the concentration process by microfiltration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material`s yield strength, promoting plastic strain. Stress relief heat treatments at 520 degrees C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 degrees C and water quenching, stress relief at 520 degrees C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 degrees C, 25 degrees C and 60 degrees C. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the critical impeller speed results for 6 L Denver and Wemco bench-scale flotation cells with findings from a study by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2007. Evaluation of solids suspension in a pilot-scale mechanical flotation cell: the critical impeller speed. Minerals Engineering 20,233-240; Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] conducted in a 125 L Batequip flotation cell. Understanding solids suspension has become increasingly important due to dramatic increases in flotation cell sizes. The critical impeller speed is commonly used to indicate the effectiveness of solids suspension. The minerals used in this study were apatite, quartz and hematite. The critical impeller speed was found to be strongly dependent on particle size, solids density and air flow rate, with solids concentration having a lesser influence. Liquid viscosity was found to have a negligible effect. The general Zwietering-type critical impeller speed correlation developed by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] was found to be applicable to all three flotation machines. The exponents for particle size, solids concentration and liquid viscosity were equivalent for all three cells. The exponent for solids density was found to be less significant than that obtained by the previous authors, and to be consistent with values reported in the general literature for stirred tanks. Finally, a new dimensionless critical impeller speed correlation is proposed where the particle size is divided by the impeller diameter. This modified equation generally predicts the experimental measurements well, with most predictions within 10% of the experimental. (C) 2009 Elsevier Ltd. All rights reserved.