985 resultados para Telegraph Creek
Resumo:
A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.
Resumo:
This study developed an understanding of hydrological processes within the Cressbrook Creek catchment of the upper Brisbane River, in particular for the alluvial aquifers. Those aquifers within the lower catchment are used for intensive irrigation, and have been impacted by long-term drought followed by flooding. The study utilised water chemistry, isotopic characters and hydraulic measurements to determine factors such as recharge, links between creeks and groundwater, and variations in water quality. The catchment-wide study will enable improved management of the local water resources.
Resumo:
As with Crocodile Dundee before it, the recent Australian film Wolf Creek promotes a specific and arguably urban-centric understanding of rural Australia. However, whilst the former film is couched in mythologized notions of the rural idyll, Wolf Creek is based firmly around the concept of rural horror. Wolf Creek is both a horror movie and a road movie, one which relies heavily upon landscape in order to tell its story. Here we argue that the film continues a tradition in the New Australian Cinema of depicting the outback and its inhabitants as something the country's mostly coastal population do not understand. Wolf Creek skilfully plays on popular conceptions of inland Australia as empty and harsh. But more than this, the film brings to the fore tensions in the rural idyll associated with the ownership and use of rural space. As an object of urban consumption, rural space may appear passive and familiar, but in the context of rural horror iconic aspects of the Australian landscape become a source of fear – a space of abjection.
Resumo:
In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.
Resumo:
Engaging middle-school students in science continues to be a challenge in Australian schools. One initiative that has been tried in the senior years but is a more recent development in the middle years is the context-based approach. In this ethnographic study, we researched the teaching and learning transactions that occurred in one 9th grade science class studying a context-based Environmental Science unit that included visits to the local creek for 11 weeks. Data were derived from field notes, audio and video recorded conversations, interviews, student journals and classroom documents with a particular focus on two selected groups of students. This paper presents two assertions that highlight pedagogical approaches that contributed to learning. Firstly, spontaneous teaching episodes created opportunities for in-the-moment questioning by the teacher that led to students’ awareness of environmental issues and the scientific method; secondly, group work using flip cameras afforded opportunities for students to connect the science concepts with the context. Furthermore, students reported positively about the unit and expressed their appreciation for the opportunity to visit the creek frequently. This findings from this study should encourage teachers to take students into the real-world field for valuable teaching and learning experiences that are not available in the formal classroom.
Resumo:
The Econfina Creek basin area in northwestern Florida, which includes Bay County, southeastern Washiigton County, and parts of Calhoun, Gulf, and Jackson counties is shown in figure 1. The basin has an abundant supply of ground water and surface water of good quality. This determination is based on a three-year investigation of the water resources of the basin by the U. S. Geological Survey in cooperation with the Division of Geology, Florida Board of Conservation, during the period from October 1961 through June 1964. The purpose of this report is to assemble the basic data collected during this investigation for those persons interested in water development or management in this basin. (Document has 131 pages.)
Resumo:
A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)
Resumo:
Tidal creek ecosystems are the primary aquatic link between stormwater runoff form the land and estuaries. Small tidal creeks begin in upland areas and drain into larger creeks forming a network. The creeks increase in size until they join a tidal river, sound, bay, or harbor that ultimately conect to the coastal ocean. The upper regions or headwaters of tidal creeks are "first responders" to stormwater runoff and are an important habitat for evaluating the impacts of coastal development on aquatic ecosystems. (PDF contains 22 pages)
Resumo:
Four groups of fin clipped brown trout (Salmo trutta) fingerlings were planted in Hot Creek over a six year period. Survival and growth were estimated by fall and/or spring mark-and-recapture surveys. Yield to the angler for two of the tour groups stocked was estimated by stratified random creel surveys. Fingerling survival from the midsummer stocking period to fall averaged 51 %. Overwinter survival from young-of-the-year to yearling fish averaged 49%. Angler harvest of two groups of fingerlings stocked at densities of 16,082 fish/mile averaged 1,704 trout/mile (10.6%) and 194 lbs/acre. Abundant cover and microhabitat suitable tor young trout, ice-free winters, and rapid growth were factors viewed as contributing to high yields. Results do not suggest a change is needed in the general policy of not stocking brown trout fingerlings in California streams. Results do show that fingerlings stocked in Hot Creek, and presumably other productive streams with abundant cover, can effectively fill a void created by limited recruitment. (PDF contains 24 pages.)
Resumo:
Silver King Creek, Alpine County, is the native range of the Federally-threatened Paiute cutthroat trout, Oncorhynchus clarki seleniris. Paiute cutthroat currently inhabit Coyote Valley and Corral Valley creeks, which are tributaries to Silver King Creek below Llewellyn Falls, and also Silver King Creek and tributaries aboye Llewellyn Falls. Rainbow trout, O. mykiss, were introduced into the basin during 1949 and became hybridized with Paiute cutthroat. Chemical treatments attempted by the California Department of Fish and Game (CDFG) in 1964 and 1976 failed to eliminate hybrid trout. A chemical treatment project was again conducted by the CDFG from 1991 through 1993 to eliminate hybrid trout from within the range of Paiute cutthroat. This report presents a summary of events for the first two years of the Silver King Paiute Cutthroat Trout Restoration Project; a more thorough analysis is made of the third and final year of the project. (PDF contains 39 pages.)
Resumo:
Presents a review of the recreational values and economic importance of Maryland Fishing waters. (PDF contains 5 pages)
Resumo:
The distribution, abundance, age and growth, the food and feeding habits, condition factor and reproduction of Hepsetus odoe in the Epie Creek Floodplain (Nigeria) was studied. H. odoe occur in the creek, swamp channel and lake. It is a very common, abundant and one of the major commercial species. A total of 457 specimens weighing 76.90 kg were caught during the period of investigation. The catches were more abundant in the dry season than in the wet season. The total length ranged from 10 cm to 46 cm while the weight varied between 50 g and 900 g. Six distinct components or year classes were observed using Bhattacharya's method. A growth exponential value 'b' was 3.35 with condition factor, 'k' values ranging from 0.69 to 0.83. The main diets of Hepsetus odoe were fish, including crustaceans (shrimps) and insects. The mean fecundity was 6060 plus or minus 358 eggs (range 2,769 to 6.667 eggs). The ova diameter of H. odoe was found to range from 2.2 mm to 2.6 mm with overall mean = 2.4 plus or minus 0.1)
Resumo:
Politically the Colorado river is an interstate as well as an international stream. Physically the basin divides itself distinctly into three sections. The upper section from head waters to the mouth of San Juan comprises about 40 percent of the total of the basin and affords about 87 percent of the total runoff, or an average of about 15 000 000 acre feet per annum. High mountains and cold weather are found in this section. The middle section from the mouth of San Juan to the mouth of the Williams comprises about 35 percent of the total area of the basin and supplies about 7 percent of the annual runoff. Narrow canyons and mild weather prevail in this section. The lower third of the basin is composed of mainly hot arid plains of low altitude. It comprises some 25 percent of the total area of the basin and furnishes about 6 percent of the average annual runoff.
The proposed Diamond Creek reservoir is located in the middle section and is wholly within the boundary of Arizona. The site is at the mouth of Diamond Creek and is only 16 m. from Beach Spring, a station on the Santa Fe railroad. It is solely a power project with a limited storage capacity. The dam which creats the reservoir is of the gravity type to be constructed across the river. The walls and foundation are of granite. For a dam of 290 feet in height, the back water will be about 25 m. up the river.
The power house will be placed right below the dam perpendicular to the axis of the river. It is entirely a concrete structure. The power installation would consist of eighteen 37 500 H.P. vertical, variable head turbines, directly connected to 28 000 kwa. 110 000 v. 3 phase, 60 cycle generators with necessary switching and auxiliary apparatus. Each unit is to be fed by a separate penstock wholly embedded into the masonry.
Concerning the power market, the main electric transmission lines would extend to Prescott, Phoenix, Mesa, Florence etc. The mining regions of the mountains of Arizona would be the most adequate market. The demand of power in the above named places might not be large at present. It will, from the observation of the writer, rapidly increase with the wonderful advancement of all kinds of industrial development.
All these things being comparatively feasible, there is one difficult problem: that is the silt. At the Diamond Creek dam site the average annual silt discharge is about 82 650 acre feet. The geographical conditions, however, will not permit silt deposites right in the reservoir. So this design will be made under the assumption given in Section 4.
The silt condition and the change of lower course of the Colorado are much like those of the Yellow River in China. But one thing is different. On the Colorado most of the canyon walls are of granite, while those on the Yellow are of alluvial loess: so it is very hard, if not impossible, to get a favorable dam site on the lower part. As a visitor to this country, I should like to see the full development of the Colorado: but how about THE YELLOW!
Resumo:
Fish assemblages were investigated in tidal-creek and seagrass habitats in the Suwannee River estuary, Florida. A total of 91,571 fish representing 43 families were collected in monthly seine samples from January 1997 to December 1999. Tidal creeks supported greater densities of fish (3.89 fish/m2; 83% of total) than did seagrass habitats (0.93 fish/m2). We identified three distinct fish assemblages in each habitat: winter−spring, summer, and fall. Pinfish (Lagodon rhomboides), pigfish (Orthopristis chrysoptera), and syngnathids characterized seagrass assemblages, whereas spot (Leiostomus xanthurus), bay anchovy (Anchoa mitchilli), silversides (Menidia spp.), mojarras (Eucinostomus spp.), and fundulids characterized tidal-creek habitats. Important recreational and commercial species such as striped mullet (Mugil cephalus) and red drum (Sciaenops ocellatus) were found primarily in tidal creeks and were among the top 13 taxa in the fish assemblages found in the tidal-creek habitats. Tidal-creek and seagrass habitats in the Suwannee River estuary were found to support diverse fish assemblages. Seasonal patterns in occurrence, which were found to be associated with recruitment of early-life-history stages, were observed for many of the fish species.