19 resultados para Telômeros
Resumo:
Los telómeros se encuentran en el foco de atención de muchas investigaciones por su papel en el mantenimiento de la integridad cromosómica y su implicación en procesos como el envejecimiento, el cáncer y la regeneración tisular. En ausencia de mecanismos compensatorios, el ADN telomérico sufre un acortamiento progresivo en cada división celular debido a la incapacidad de las ADN polimerasas convencionales de replicar el extremo 5’ de los cromosomas. La telomerasa, una ribonucleoproteína con actividad transcriptasa inversa (componente TERT), compensa el acortamiento telomérico sintetizando las secuencias teloméricas de novo en el extremo 3’ de los cromosomas utilizando como molde una molécula de ARN asociada (componente TERC). La mayoría de los tipos celulares presentan una actividad telomerasa limitada, acortándose los telómeros en cada división mitótica. Por ello, la actividad de la telomerasa y el acortamiento telomérico son factores limitantes en la esperanza de vida de los mamíferos, mientras que el acortamiento de los telómeros contribuye al envejecimiento limitando la regeneración tisular. Durante el desarrollo embrionario los telómeros se alargan, quedando determinadas las reservas teloméricas con las que contará el recién nacido. Por este motivo, el estudio de la dinámica de la elongación telómerica y su regulación durante el desarrollo embrionario temprano en mamíferos es de gran interés debido a las implicaciones que la longitud telomérica (LT) del recién nacido tiene en las etapas posteriores del desarrollo...
Resumo:
The lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. In the nuclear envelope, LAP1 is suggested to exist as a complex with A-type and B-type lamins, torsins and emerin. The presence of such complexes suggests that LAP1 may cooperate functionally with these proteins in tissues where they play a critical role. Therefore, the identification of LAP1 binding partners and the signalling pathways where LAP1 participates, is crucial for a better understanding of LAP1 functions. The work described in this thesis addresses novel human LAP1 associated proteins found through bioinformatic tools. Public databases allowed for the discovery of the LAP1 interactome, which was manually curated, identifying several functionally relevant proteins. Subsequently, the integration of multiple bioinformatic tools established novel functions to LAP1 such as DNA damage response and telomere association. In conjunction, bioinformatic results also reinforced the association of LAP1 with mitosis, and the already identified role of LAP1 in nuclear morphology. Interestingly, this association of LAP1 with the regulation of the nuclear envelope structure and mitosis progression, shares functional elements with spermatogenesis. Therefore, this work additionally described the localization of LAP1 and some of its interactors throughout the spermatogenic cycle, in mouse and human testis. The results established that the activity of LAP1 during the mouse spermatogenic cycle is most evident from stage VIII until the end of spermiogenesis, which is characteristic of manchette development. Concomitantly, some LAP1 interactors studied in this work share a similar localization, namely, PP1γ2, Lamin B1 and Lamin A/C. The results obtained from the study of LAP1 throughout different periods of the male reproductive system attributed potential new biological functions to LAP1. Thereby, this work can be the foundation of future studies regarding LAP1 and the regulation of multiple cellular processes and disease conditions.
Resumo:
Dissertação de Mestrado, Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Growing evidence suggests that regular, moderate-intensity physical activity is associated with an attenuation of leucocyte telomere length (LTL) shortening. However, more controversy exists regarding higher exercise loads, such as those imposed by elite sports participation. We have investigated LTL differences between young elite athletes (n=61, 54% men, aged [mean±SD] 27.2±4.9 years) and their healthy non-smoker, physically inactive controls (n=64, 52% men, 28.9±6.3 years) using analysis of variance (ANOVA). Elite athletes had, on average, higher LTL than controls subjects (0.89±0.26 vs 0.78±0.31, p=0.013 for the group effect, with no significant sex [p=0.995] or age effect [p=0.114]). Our results suggest that young elite athletes have longer telomeres than their inactive peers. Further research might assess the LTL of elite athletes of varying ages compared to both age-matched active and inactive individuals, respectively.