999 resultados para Tectono-stratigraphy evolution
Resumo:
The paleomagnetic investigations carried out in the 70's on Oligo-Miocene volcanics of Sardinia have demonstrated that the island was turned by 35-30 degrees clockwise from 33 Ma up to 3-1-20.5 Ma and rotated counterclockwise in a few million years [De Jong et al., 1969, 1973; Bobier et Coulon, 1970; Coulon et al., 1974; Manzoni, 1974, 1975; Bellon rr nl.. 1977: Edel et Lortscher, 1977; Edel, 1979, 1980]. Since then, the end of the rotation fixed at 19 Ma by Montigny er al. [1981] was the subject of discussions and several studies associating paleomagnetism and radiometric dating were undertaken [Assorgia er al., 1994: Vigliotti et Langenheim, 1995: Deino et al., 1997; Gattacceca rt Deino, 1999]. This is a contribution to this debate that is hampered by thr important secular variation recorded in the volcanics. The only way to get our of this problem is to sample series of successive flows as completely as possible, and to reduce the effect of secular variation by the calculation of means. Sampling was performed north of Bonorva in 5 pyroclastic flows that belong to the upper ignimbritic series SI2 according to Coulon rr nl. [1974] or LBLS according to Assorgia et al. [1997] (fig. I). Ar-40/Ar-39 dating of biotites from the debris flow (MDF) has yielded an age or 18.35 +/- 0.03 Ma [Dubois, 2000]. Five of the investigated sites are located beneath the debris flow ITV, TVB, TVD, SPM85, SPM86), one site was cured in the matrix of the debris flow (MDF) and one in 4 metric blocks included in the flow (DFC). Another site was sampled in the upper ash flow (PDM) that marks the end of the pyroclastic activity, just before the marine transgression. According to micropaleontological and radiometric dating this transgression has occurred between 18.35 and 17.6 Ma [Dubois, 2000]. After removal of a soft viscous component, the thermal demagnetization generally shows a univectorial behaviour of the remanent magnetization (fig. 2a). The maximum unblocking temperatures of 580-620 degrees (tab. I) and a rapid saturation below 100 mT (fig. 3) indicate that the carrier of the characteristic magnetization is magnetite. The exception comes: from the upper site PDM in which were found two characteristic components, one with a normal polarity and low unblocking temperatures up to 350 degreesC and one with a reversed polarity and maximum unblocking temperatures at 580-600 degreesC of magnetite. After calculation of a mean direction for each flow, the mean << Al >> direction 4 degrees /57 degrees (alpha (95) = 13 degrees) computed with the mean directions for the 5 flows may be considered as weakly affected by secular variation. But the results require a more careful examination. The declinations are N to NNW beneath the debris flow. NNW in the debris flow. and NNE (or SSW) above the debris flow, The elongated distribution of the directions obtained at sites TVB and TVD. scattered from the mean direction of TV to the mean direction of MDF is interpreted as due to partial overprinting during the debris How volcanic episode, The low temperature component PDMa is likely related to the alteration seen on thin sections and is also viewed as an overprint. As NNE/SSW directions occur as well below (mean direction << B >> : 5 degrees /58 degrees) as above the debris flow (PDMb : 200 degrees/-58 degrees). the NNW directions (<< C >> : 337 degrees /64 degrees) associated with the debris flow volcanism may be interpreted as resulting from a magnetic field excursion. According to the polarity scale of Cande and Kent [1992, 1995] and the radiometric age of MDF, the directions with normal polarity (TV, TVB, TVD, SPM85. SPM86a. MDF. DFC) may represent the period 5En. while the directions with reversed polarity PDMb and SPM86b were likely acquired during the period 5Dr. Using the mean << Al >> direction, the mean << B >>, or the PDM direction (tab. I). the deviation in declination with the direction of stable Europe 6.4 degrees /58.7 degrees (alpha (95) = 8 degrees) for a selection of 4 middle Tertiary poles by Besse et Courtillot [1991] or 7 degrees /56 degrees (alpha (95) = 3 degrees) for 19 poles listed by Edel [1980] can be considered as negligible. Using the results from the uppermost ignimbritic layer of Anglona also emplaced around 18.3 Ma [Odin rt al.. 1994]. the mean direction << E >> (3 degrees /51.5 degrees) leads to the same conclusion. On the contrary, when taking into account all dated results available for the period 5En (mean direction << D >> 353 degrees /56 degrees for 45 sites) (tab. II). the deviation 13 degrees is much more significant. As the rotation of Sardinia started around 21-20.5 Ma. the assumption of a constant velocity of rotation and the deviations of the Sardinia directions with respect to the stable Europe direction locate the end of the motion between 18.3 and 17.2 or 16.7 Ma (fig. 4). During the interval 18.35-17.5 Ma, the marine transgression took place. At the same period a NE-SW shortening interpreted as resulting from the collision of Sardinia with Apulia affected different parts of the island [Letouzey et al., 1982]. Consequently, the new paleomagnetic results and the tectono-sedimentary evolution are in favour of an end of the rotation at 17.5-18 Ma.
Resumo:
The incomplete Evros ophiolites in NE Greece form a NE-SW-oriented discontinuous belt in the Alpine orogen of the north Aegean. Field data, petrology and geochemistry are presented here for the intrusive section and associated mafic dykes of these ophiolites. Bodies of high-level isotropic gabbro and plagiogranite in the ophiolite suite are cross-cut by NE-SW-trending boninitic and tholeiitic-boninitic affinity dykes, respectively. The dykes fill tensile fractures or faults, which implies dyke emplacement in an extensional tectonic regime. The tholeiitic-transitional boninitic gabbro is REE- and HFS-depleted relative to N-MORB, indicating derivation from melting of a refractory mantle peridotite source. Associated boninitic dykes are slightly LREE-enriched, showing mineral and whole-rock geochemistry similar to the gabbro. The plagiogranite is a strongly REE-enriched high-silica trondhjemite, with textures and composition typical for an oceanic crust differentiate. Plagiogranite-hosted tholeiitic and transitional boninitic dykes are variably REE-enriched. Geochemical modelling indicates origin of the plagiogranite by up to 75% fractional crystallization of basaltic magma similar to that producing the associated tholeiitic dykes. All mafic rocks have high LILE/HFSE ratios and negative Ta-Nb-Ti and Ce anomalies, typical for subduction zone-related settings. The mafic rocks show a similar trace-element character to the mafic lavas of an extrusive section in Bulgaria, suggesting they both form genetically related intrusive and extrusive suites of the Evros ophiolites. The field occurrence, the structural context, the petrology and geochemical signature of the studied magmatic assemblage provide evidence for its origin in a proto-arc (fore-arc) tectonic setting, thus tracing the early stages of the tectono-magmatic evolution of Jurassic arc-marginal basin system that has generated the supra-subduction type Evros ophiolites.
Resumo:
The Bocaina Plateau, which is situated on the eastern flank of the continental rift of southeastern Brazil, is the highest part of the Serra do Mar. Topographic relief in this area is suggested to be closely related to its complex tectono-magmatic evolution since the breakup of Western Gondwana and opening of the South Atlantic Ocean. Apatite fission track ages and track length distributions from 27 basement outcrops were determined to assess these hypotheses and reconstruct the denudation history of the Bocaina Plateau. The ages range between 303 +/- 32 and 46 +/- 5 Ma, and are significantly younger than the stratigraphic ages. Mean track lengths vary from 13.44 +/- 1.51 to 11.1 +/- 1.48 mu m, with standard deviations between 1.16 and 1.83 mu m. Contrasting ages within a single plateau and similar ages at different altitudes indicate a complex regional tectonothermal evolution. The thermal histories inferred from these data imply three periods of accelerated cooling related to the Early Cretaceous continental breakup, Early Cretaceous alkaline magmatism, and the Paleogene evolution of the continental rift of southeastern Brazil. The oldest fission track ages (>200 Ma) were obtained in the Serra do Mar region, suggesting that these areas were a long-lived source of sediments for the Parana, Bauru, and Santos basins. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
The regional geological work for the oil industry, in order to find potential areas for hydrocarbon exploration and understand the geological parameters responsible for the formation of the deposit are known importance. This work fits into that scenario, with regional research with the aid of wells and 2D and 3D seismic sold by DBEP (Database Exploration and Production). Were also used as GeoGraphix software package Landmarks modules Prizm and SeisWork 2D and 3D, and the Surfer 8 and ArcGIS 9.2 with the infrastructure provided by the 05 PRH - ANP with LSGI (Laboratory of Seismic and Geological Interpretation) located at UNESP -- Campus de Rio Claro. The work focuses on study the trend of oil-Badejo-Linguado-Pampo, producing fields since the beginning of offshore holdings. The Campos Basin is now known as the offshore basin of the country more productive, and the high structural Badejo is a structure of great importance in the basin presents itself as largely responsible for the conditioning of hydrocarbon fields Pampo, Linguado and Badejo. Therefore this work also aims to increase knowledge of the region in terms of tectonic and stratigraphic characterize the geometry of the structures associated with this major regional structure. For this we used structural contour maps of the main chrono-horizons, and Isopach maps for the purpose of better understanding the tectono-sedimentary evolution of the Campos Basin locally.
Resumo:
Low-pressure/high-temperature (LP/HT) metamorphic belts are characterised by rocks that experienced abnormal heat flow in shallow crustal levels (T > 600 °C; P < 4 kbar) resulting in anomalous geothermal gradients (60-150 °C/km). The abnormal amount of heat has been related to crustal underplating of mantle-derived basic magmas or to thermal perturbation linked to intrusion of large volumes of granitoids in the intermediate crust. In particular, in this latter context, magmatic or aqueous fluids are able to transport relevant amounts of heat by advection, thus favouring regional LP/HT metamorphism. However, the thermal perturbation consequent to heat released by cooling magmas is responsible also for contact metamorphic effects. A first problem is that time and space relationships between regional LP/HT metamorphism and contact metamorphism are usually unclear. A second problem is related to the high temperature conditions reached at different crustal levels. These, in some cases, can completely erase the previous metamorphic history. Notwithstanding this problem is very marked in lower crustal levels, petrologic and geochronologic studies usually concentrate in these attractive portions of the crust. However, only in the intermediate/upper-crustal levels of a LP/HT metamorphic belt the tectono-metamorphic events preceding the temperature peak, usually not preserved in the lower crustal portions, can be readily unravelled. The Hercynian Orogen of Western Europe is a well-documented example of a continental collision zone with widespread LP/HT metamorphism, intense crustal anatexis and granite magmatism. Owing to the exposure of a nearly continuous cross-section of the Hercynian continental crust, the Sila massif (northern Calabria) represents a favourable area to understand large-scale relationships between granitoids and LP/HT metamorphic rocks, and to discriminate regional LP/HT metamorphic events from contact metamorphic effects. Granulite-facies rocks of the lower crust and greenschist- to amphibolite-facies rocks of the intermediate-upper crust are separated by granitoids emplaced into the intermediate level during the late stages of the Hercynian orogeny. Up to now, advanced petrologic studies have been focused mostly in understanding P-T evolution of deeper crustal levels and magmatic bodies, whereas the metamorphic history of the shallower crustal levels is poorly constrained. The Hercynian upper crust exposed in Sila has been subdivided in two different metamorphic complexes by previous authors: the low- to very low-grade Bocchigliero complex and the greenschist- to amphibolite-facies Mandatoriccio complex. The latter contains favourable mineral assemblages in order to unravel the tectono-metamorphic evolution of the Hercynian upper crust. The Mandatoriccio complex consists mainly of metapelites, meta-arenites, acid metavolcanites and metabasites with rare intercalations of marbles and orthogneisses. Siliciclastic metasediments show a static porphyroblastic growth mainly of biotite, garnet, andalusite, staurolite and muscovite, whereas cordierite and fibrolite are less common. U-Pb ages and internal features of zircons suggest that the protoliths of the Mandatoriccio complex formed in a sedimentary basin filled by Cambrian to Silurian magmatic products as well as by siliciclastic sediments derived from older igneous and metamorphic rocks. In some localities, metamorphic rocks are injected by numerous aplite/pegmatite veins. Small granite bodies are also present and are always associated to spotted schists with large porphyroblasts. They occur along a NW-SE trending transcurrent cataclastic fault zone, which represents the tectonic contact between the Bocchigliero and the Mandatoriccio complexes. This cataclastic fault zone shows evidence of activity at least from middle-Miocene to Recent, indicating that brittle deformation post-dated the Hercynian orogeny. P-T pseudosections show that micaschists and paragneisses of the Mandatoriccio complex followed a clockwise P-T path characterised by four main prograde phases: thickening, peak-pressure condition, decompression and peak-temperature condition. During the thickening phase, garnet blastesis started up with spessartine-rich syntectonic core developed within micaschists and paragneisses. Coevally (340 ± 9.6 Ma), mafic sills and dykes injected the upper crustal volcaniclastic sedimentary sequence of the Mandatoriccio complex. After reaching the peak-pressure condition (≈4 kbar), the upper crust experienced a period of deformation quiescence marked by the static overgrowths of S2 by Almandine-rich-garnet rims and by porphyroblasts of biotite and staurolite. Probably, this metamorphic phase is related to isotherms relaxation after the thickening episode recorder by the Rb/Sr isotopic system (326 ± 6 Ma isochron age). The post-collisional period was mainly characterised by decompression with increasing temperature. This stage is documented by the andalusite+biotite coronas overgrown on staurolite porphyroblasts and represents a critical point of the metamorphic history, since metamorphic rocks begin to record a significant thermal perturbation. Peak-temperature conditions (≈620 °C) were reached at the end of this stage. They are well constrained by some reaction textures and mineral assemblages observed almost exclusively within paragneisses. The later appearance of fibrolitic sillimanite documents a small excursion of the P-T path across the And-Sil boundary due to the heating. Stephanian U-Pb ages of monazite crystals from the paragneiss, can be related to this heating phase. Similar monazite U-Pb ages from the micaschist combined with the lack of fibrolitic sillimanite suggest that, during the same thermal perturbation, micaschists recorded temperatures slightly lower than those reached by paragneisses. The metamorphic history ended with the crystallisation of cordierite mainly at the expense of andalusite. Consequently, the Ms+Bt+St+And+Sill+Crd mineral assemblage observed in the paragneisses is the result of a polyphasic evolution and is characterised by the metastable persistence of the staurolite in the stability fields of the cordierite. Geologic, geochronologic and petrographic data suggest that the thermal peak recorded by the intermediate/upper crust could be strictly connected with the emplacement of large amounts of granitoid magmas in the middle crust. Probably, the lithospheric extension in the relatively heated crust favoured ascent and emplacement of granitoids and further exhumation of metamorphic rocks. After a comparison among the tectono-metamorphic evolutions of the different Hercynian crustal levels exposed in Sila, it is concluded that the intermediate/upper crustal level offers the possibility to reconstruct a more detailed tectono-metamorphic history. The P-T paths proposed for the lower crustal levels probably underestimate the amount of the decompression. Apart from these considerations, the comparative analysis indicates that P-T paths at various crustal levels in the Sila cross section are well compatible with a unique geologic scenario, characterized by post-collisional extensional tectonics and magmas ascent.
Resumo:
We present the initial results of a U-Th-Pb zircon ion-microprobe investigation on samples from the Central Belt of Taimyr, in order to constrain its tectono-magmatic evolution. The zircon samples are from a deformed twomica granite (Faddey Massif), deformed metamorphosed gabbroic dike entrained as pods and lenses within metamorphosed tholeiitic basalts of the Kunar-Mod volcanic suite (Klyaz'ma River region), a metamorphosed rhyolite of the same volcanic suite overlying the basic metavolcanic rocks, as well as an undeformed dolerite dike which intrudes the metamorphosed Kunar-Mod basic volcanic rocks. Preliminary results on zircons from the two-mica granite suggest a crystallization age of ~630 Ma for this rock, with inheritance from assimilated crust 840 Ma to 1.1 Ga in age. In the Klyaz'ma River region, zircons from the meta-rhyolite yield a concordant age of -630 Ma. Zircons from the entrained metagabbroic dikes have so far yielded an age of -615 Ma (1 grain), as well as Archean ages (5 grains, concordant at 2.6-2.8 Ga). It seems likely that the Archean grains represent assimilation of older crustal material. Zircons from the post-tectonic dolerite dike have a bimodal age distribution. A well-defined younger age of 281 ±9 Ma is interpreted to represent the crystallization age of the dike, while older, concordant ages of 2.6-2.9 Ga likely represent assimilation of Archean crust (Siberian craton at depth). Several important conclusions can be drawn from the data. (1) The mafic and felsic lithologies of the Kunar-Mod volcanic suite are genetically related and should be the same age. Ages of-630 Ma (meta-rhyolite) and -615 Ma (metagabbroic dikes representing the latest stage of mafic magmatism associated the Kunar-Mod suite) suggest that these lithologies may be the same age, but more data are required to confirm this hypothesis. (2) The 630 Ma two-mica granite is similar in age to the time of high-grade metamorphism, suggesting that syntectonic granite emplacement accompanied obduction of the accretionary Central Belt to the Siberian craton. (3) An Early Permian age is well defined for the undeformed dolerite dike. Dolerite dikes occur across the whole of Taimyr, but are deformed to the south. If related, this single magmatic event pre-dates Permo-Triassic Siberian trap magmatism. Furthermore, it suggests that deformation was localized to southeastern Taimyr.
Resumo:
George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.
Resumo:
The Maud Belt in Dronning Maud Land (western East Antarctic Craton) preserves a high-grade polyphase tectono-thermal history with two orogenic episodes of Mesoproterozoic (1.2-1.0 Ga) and Neoproterozoic (0.6-0.5 Ga) age. New SHRIMP U-Pb zircon data from southern Gjelsvikfjella in the northeastern part of the belt make it possible to differentiate between a series of magmatic and metamorphic events. The oldest event recorded is the formation of an extensive 1140-1130 Ma volcanic arc. This was followed by 1104 ± 8 Ma granitoids that might represent, together with so far undated mafic dykes, part of a decompression melting-related bimodal suite that reflects the sub-continental Umkondo igneous event. The first high-grade metamorphism is constrained at 1070 Ma. The metamorphic age data are similar to those obtained from other parts of the Maud Belt, but also from the Namaqua-Natal Belt in South Africa, but the preceding arc formation was diachronous in the two belts. This indicates that the two belts did not form a continuous volcanic arc unit as suggested in previous models, but became connected only at the end of the Mesoproterozoic. Intense reworking during the Neoproterozoic, probably as a result of continent-continent collision between components of Gondwana, is indicated by ductile refliation, further high-grade metamorphic recrystallisation and metamorphic zircon overgrowths at approximately 530 Ma. This was followed by late- to post-tectonic magmatism, reflected by 500 Ma granite bodies and 490 Ma aplite dykes as well as a 480 Ma gabbro body.