932 resultados para Tata-box
Resumo:
Multiprotein bridging factor 1 (MBF1) is a transcriptional cofactor that bridges between the TATA box-binding protein (TBP) and the Drosophila melanogaster nuclear hormone receptor FTZ-F1 or its silkworm counterpart BmFTZ-F1. A cDNA clone encoding MBF1 was isolated from the silkworm Bombyx mori whose sequence predicts a basic protein consisting of 146 amino acids. Bacterially expressed recombinant MBF1 is functional in interactions with TBP and a positive cofactor MBF2. The recombinant MBF1 also makes a direct contact with FTZ-F1 through the C-terminal region of the FTZ-F1 DNA-binding domain and stimulates the FTZ-F1 binding to its recognition site. The central region of MBF1 (residues 35–113) is essential for the binding of FTZ-F1, MBF2, and TBP. When the recombinant MBF1 was added to a HeLa cell nuclear extract in the presence of MBF2 and FTZ622 bearing the FTZ-F1 DNA-binding domain, it supported selective transcriptional activation of the fushi tarazu gene as natural MBF1 did. Mutations disrupting the binding of FTZ622 to DNA or MBF1, or a MBF2 mutation disrupting the binding to MBF1, all abolished the selective activation of transcription. These results suggest that tethering of the positive cofactor MBF2 to a FTZ-F1-binding site through FTZ-F1 and MBF1 is essential for the binding site-dependent activation of transcription. A homology search in the databases revealed that the deduced amino acid sequence of MBF1 is conserved across species from yeast to human.
Resumo:
We attempted to devise a transcription system in which a particular DNA sequence of interest could be inducibly expressed under the control of a modified polymerase III (pol III) promoter. Its activation requires a mutated transcription factor not contained endogenously in human cells. We constructed such a promoter by fusing elements of the β-lactamase gene of Escherichia coli, containing a modified TATA-box and a pol III terminator, to the initiation region of the human U6 gene. This construct functionally resembles a 5′-regulated pol III gene and its transcribed segment can be exchanged for an arbitrary sequence. Its transcription in vitro by pol III requires the same factors as the U6 gene with the major exception that the modified TATA-box of this construct only interacts with a TATA-binding protein (TBP) mutant (TBP-DR2) but not with TBP wild-type (TBPwt). Its transcription therefore requires TBP-DR2 exclusively instead of TBPwt. In order to render the system inducible, we fused the gene coding for TBP-DR2 to a tetracycline control element and stably transfected this new construct into HeLa cells. Induction of such a stable and viable clone with tetracycline resulted in the expression of functional TBP-DR2. This system may conceptually be used in the future to inducibly express an arbitrary DNA sequence in vivo under the control of the above mentioned promoter.
Resumo:
The evolutionarily conserved Krüppel-associated box (KRAB) is present in the N-terminal regions of more than one-third of all Krüppel-class zinc finger proteins. Recent experiments have demonstrated that the KRAB-A domain tethered to a promoter DNA by connecting to heterologous DNA-binding protein domain or targeted to a promoter-proximal RNA sequence acts as a transcriptional silencing of RNA polymerase II promoters. Here we show that expression of KRAB domain suppresses in vivo the activating function of various defined activating transcription factors, and we demonstrate that the KRAB domain specifically silences the activity of promoters whose initiation is dependent on the presence of a TATA box. Promoters whose accurate transcription initiation is directed by a pyrimidine-rich initiator element, however, are relatively unaffected. We also report in vitro transcription experiments indicating that the KRAB domain is able to repress both activated and basal promoter activity. Thus, the KRAB domain appears to repress the activity of certain promoters through direct communication with TATA box-dependent basal transcription machinery.
Resumo:
The main cis-acting control regions for replication of the single-stranded DNA genome of maize streak virus (MSV) are believed to reside within an approximately 310 nt long intergenic region (LIR). However, neither the minimum LIR sequence required nor the sequence determinants of replication specificity have been determined experimentally. There are iterated sequences, or iterons, both within the conserved inverted-repeat sequences with the potential to form a stem-loop structure at the origin of virion-strand replication, and upstream of the rep gene TATA box (the rep-proximal iteron or RPI). Based on experimental analyses of similar iterons in viruses from other geminivirus genera and their proximity to known Rep-binding sites in the distantly related mastrevirus wheat dwarf virus, it has been hypothesized that the iterons may be Rep-binding and/or -recognition sequences. Here, a series of LIR deletion mutants was used to define the upper bounds of the LIR sequence required for replication. After identifying MSV strains and distinct mastreviruses with incompatible replication-specificity determinants (RSDs), LIR chimaeras were used to map the primary MSV RSD to a 67 nt sequence containing the RPI. Although the results generally support the prevailing hypothesis that MSV iterons are functional analogues of those found in other geminivirus genera, it is demonstrated that neither the inverted-repeat nor RPI sequences are absolute determinants of replication specificity. Moreover, widely divergent mastreviruses can trans-replicate one another. These results also suggest that sequences in the 67 nt region surrounding the RPI interact in a sequence-specific manner with those of the inverted repeat.
Resumo:
Several late gene expression factors (Lefs) have been implicated in fostering high levels of transcription from the very late gene promoters of polyhedrin and p10 from baculoviruses. We cloned and characterized from Bombyx mori nuclear polyhedrosis virus a late gene expression factor (Bmlef2) that encodes a 209-amino-acid protein harboring a Cys-rich C-terminal domain. The temporal transcription profiles of lef2 revealed a 1.2-kb transcript in both delayed early and late periods after virus infection. Transcription start site mapping identified the presence of an aphidicolin-sensitive late transcript arising from a TAAG motif located at -352 nucleotides and an aphidicolin-insensitive early transcript originating from a TTGT motif located 35 nucleotides downstream to a TATA box at -312 nucleotides, with respect to the +1 ATG of lef2. BmLef2 trans-activated very late gene expression from both polyhedrin and p10 promoters in transient expression assays. Internal deletion of the Cys-rich domain from the C-terminal region abolished the transcriptional activation. Inactivation of Lef2 synthesis by antisense lef2 transcripts drastically reduced the very late gene transcription but showed little effect on the expression from immediate early promoter. Decrease in viral DNA synthesis and a reduction in virus titer were observed only when antisense lef2 was expressed under the immediate early (ie-1) promoter. Furthermore, the antisense experiments suggested that lef2 plays a direct role in very late gene transcription.
Resumo:
In a study towards elucidating the role of aromatases during puberty in female grey mullet, the cDNAs of the brain (muCyp19b) and ovarian (muCyp19a) aromatase were isolated by RT-PCR and their relative expression levels were determined by quantitative real-time RT-PCR. The muCyp19a ORF of 1515 bp encoded 505 predicted amino acid residues, while that of muCyp19b was 1485 bp and encoded 495 predicted amino acid residues. The expression level of muCyp19b significantly increased in the brain as puberty advanced; however, its expression level in the pituitary increased only slightly with pubertal development. In the ovary, the muCyp19a expression level markedly increased as puberty progressed. The promoter regions of the two genes were also isolated and their functionality evaluated in vitro using luciferase as the reporter gene. The muCyp19a promoter sequence (650 bp) contained a consensus TATA box and putative transcription factor binding sites, including two half EREs, an SF-1, an AhR/Arnt, a PR and two GATA-3s. The muCyp19b promoter sequence (2500 bp) showed consensus TATA and CCAAT boxes and putative transcription binding sites, namely: a PR, an ERE, a half ERE, a SP-1, two GATA-binding factor, one half GATA-1, two C/EBPs, a GRE, a NFkappaB, three STATs, a PPAR/RXR, an Ahr/Arnt and a CRE. Basal activity of serially deleted promoter constructs transiently transfected into COS-7, [alpha]T3 and TE671 cells demonstrated the enhancing and silencing roles of the putative transcription factor binding sites. Quinpirole, a dopamine agonist, significantly reduced the promoter activity of muCyp19b in TE671. The results suggest tissue-specific regulation of the muCyp19 genes and a putative alternative promoter for muCyp19b.
Resumo:
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with loci on chromosome 9q34.12 (TSC1) and chromosome 16p13.3 (TSC2). Genes for both loci have been isolated and characterized. The promoters of both genes have not been characterized so far and little is known about the regulation of these genes. This study reports the characterization of the human TSC1 promoter region for the first time. We have identified a novel alternative isoform in the 5' untranslated region (UTR) of the TSC1 gene transcript involving exon 1. Alternative isoforms in the 5' UTR of the mouse Tsc1 gene transcript involving exon I and exon 2 have also been identified. We have identified three upstream open reading frames (uORFs) in the 5' UTR of the TSC1/Tsc1 gene. A comparative study of the 5' UTR of TSC1/Tsc1 gene has revealed that there is a high degree of similarity not only in the sequence but also in the splicing pattern of both human and mouse TSC1 genes. We have used PCR methodology to isolate approximately 1.6 kb genomic DNA 5' to the TSC1 cDNA. This sequence has directed a high level of expression of luciferase activity in both HeLa and HepG2 cells. Successive 5' and 3' deletion analysis has suggested that a -587 bp region, from position +77 to -510 from the transcription start site (TSS), contains the promoter activity. Interestingly, this region contains no consensus TATA box or CAAT box. However, a 521-bp fragment surrounding the TSS exhibits the characteristics of a CpG island which overlaps with the promoter region. The identification of the TSC1 promoter region will help in designing a suitable strategy to identify mutations in this region in patients who do not show any mutations in the coding regions. It will also help to study the regulation of the TSC1 gene and its role in tumorigenesis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Gene expression is the most fundamental biological process, which is essential for phenotypic variation. It is regulated by various external (environment and evolution) and internal (genetic) factors. The level of gene expression depends on promoter architecture, along with other external factors. Presence of sequence motifs, such as transcription factor binding sites (TFBSs) and TATA-box, or DNA methylation in vertebrates has been implicated in the regulation of expression of some genes in eukaryotes, but a large number of genes lack these sequences. On the other hand, several experimental and computational studies have shown that promoter sequences possess some special structural properties, such as low stability, less bendability, low nucleosome occupancy, and more curvature, which are prevalent across all organisms. These structural features may play role in transcription initiation and regulation of gene expression. We have studied the relationship between the structural features of promoter DNA, promoter directionality and gene expression variability in S. cerevisiae. This relationship has been analyzed for seven different measures of gene expression variability, along with two different regulatory effect measures. We find that a few of the variability measures of gene expression are linked to DNA structural properties, nucleosome occupancy, TATA-box presence, and bidirectionality of promoter regions. Interestingly, gene responsiveness is most intimately correlated with DNA structural features and promoter architecture.
Resumo:
Aromatase plays a key role in sex differentiation of gonads. In this study, we cloned the full-length cDNA of ovarian aromatase from protogynous hermaphrodite red-spotted grouper (Epinephelus akaara), and prepared the corresponding anti-EaCyp19a1a antiserum. Western blot and immunofluorescence studies revealed ovary-specific expression pattern of EaCyp19a1a in adults and its dynamic expression change during artificial sex reversal. EaCyp19a1a was expressed by follicular cells of follicular layer around oocytes because strong EaCyp19a1a immunofluorescence was observed in the cells of ovaries. During artificial sex reversal, EaCyp19a1a expression dropped significantly from female to male, and almost no any positive EaCyp19a1a signal was observed in testicular tissues. Then, we cloned and sequenced a total of 1967 bp T-flanking sequence of EaCyp19a1a promoter, and showed a number of potential binding sites for some transcriptional factors, such as SOX5, GATA gene family, CREB, AP1, FOXL1, C/EBP, ARE and SF-1. Moreover, we prepared a series of 5' deletion promoter constructs and performed in vitro luciferase assays of EaCyp19a1a promoter activities. The data indicated that the CREB regulation region from -1010 to -898 might be a major cis-acting element to EaCyp19a1a promoter, whereas the elements GATA and SOX5 in the region from -1216 to -1010 might be suppression elements. Significantly, we found a common conserved sequence region in the fish ovary-type aromatase promoters with identities from 93% to 34%. And, the motifs of TATA box, SF-1, SOX5, and CREB existed in the region and were conserved among the most of fish species. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The metallothionein-2 (MT-2) gene was isolated from the mandarin fish, one of the most important industrial aquatic animals in China, by using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of MT-2 comprised 60 amino acids and showed approximately 62.3% identity to human metallothionein. Its promoter region was amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The MT-2 gene consists of 3 exons and 2 introns, extending approximately 900 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that MT-2 formed a clade with fish metallothionein. The promoter region contained 5 putative metal-regulatory elements (MREs) and 1 TATA box. Real-time quantitative RT-PCR analysis revealed that MT-2 transcripts were significantly increased in the brain and gills and were stable in the muscles, liver, and trunk kidney in Cd2+-stimulated fish. Western blotting analysis demonstrated that the protein of the MT-2 gene was expressed mainly in the gills, liver, heart, trunk kidney, muscle, and intestine; it was weakly detected in the brain and head kidney. Moreover, the MT-2 protein was immunohistochemically detected in the cytoplasm in the liver and trunk kidney. All the above results revealed that the mandarin fish MT-2 would be a useful biomarker for metal pollution. (C) 2008 Published by Elsevier Inc.
Resumo:
Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI- 1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Some members of hairy/Enhancer-of-split-related gene (HES) family have important effects on axial mesoderm segmentation and the establishment and maintenance of the somite fringe. In fishes. the her6 gene, a member of the HES family, is the homologue Of heS1 in mammals and chicken. In this study, the her6 gene and its full-length cDNA from the common carp (Cyprinus carpio) were isolated and characterized. The genomic sequence of common carp her6 is approximately 1.7 kb. with four exons and three introns, and the full-length cDNA of 1314 bp encodes a Putative polypeptide of 271 amino acids. To analyse the promoter sequence of common carp her6. sequences of various lengths upstream from the transcription initiation site of her6 were fused to enhanced green fluorescent. protein gene (eGFP) and introduced into zebrafish embryos by microinjection to generate transgenic embryos. Our results show that the upstream sequence of 500 bp can direct highly efficient and tissue-specific expression of eGFP in zebrafish embryos. whereas a fragment of 200 bp containing the TATA box and a partial suppressor of hairless paired site sequence (SPS) is not sufficient to drive eGFP expression in zebrafish embryos.
Resumo:
Lunatic fringe (Lfng), one modulator of Notch signaling, plays an essential part in demarcation of tissues boundaries during animal early development, especially somitogenesis. To characterize the promoter of zebrafish 1fng and generate somite-specific transgenic zebrafish, we isolated the upstream regulatory region of zebrafish 1fng by blast search at the Ensembl genome database (http://www. ensembl.org) and analyzed the promoter activity using green fluorescent protein (GFP) as a reporter. Promoter activity assay in zebrafish shows that the 0.2-kb fragment containing GC-box, CAAT-box, and TATA-box can direct tissue-specific GFP expression, while the 0.4-kb and 1.2-kb fragments with further upstream sequence included drive GFP expression more efficiently. We produced 1fngEGFP-transgenic founders showing somite-specific expression of GFP and consequently generated a hemizygous 1fngEGFP-transgenic line. The eggs from 1fngEGFP-transgenic female zebrafish show strong GFP expression, which is consistent to the reverse-transcription polymerase chain reaction PCR (RT-PCR) detection of 1fng transcripts in the fertilized eggs. This reveals that zebrafish 1fng is a maternal factor existing in matured eggs, suggesting that fish somitogcnesis may be influenced by maternal factors.
Resumo:
高等植物种子胚乳贮藏蛋白是种子发芽时的主要氮源,也是人类和动物食用植物蛋白的主要来源。大麦种子胚乳贮藏蛋白主要是醇溶蛋白(hordeins),占大麦胚乳总蛋白的50–60%。根据大麦醇溶蛋白的大小和组成特点,大麦醇溶蛋白被划分为三种类型:富硫蛋白亚类(B,γ-hordeins)、贫硫蛋白亚类(C-hordeins)以及高分子量蛋白亚类(D-hordeins)。B组和C组醇溶蛋白是大麦胚乳的两类主要贮藏蛋白,它们分别占大麦总醇溶蛋白成分的70–80%和10–12%。遗传分析表明,大麦B、C、D和γ-组醇溶蛋白分别是由位于大麦第五染色体1H(5)上的Hor2、Hor1、Hor3和Hor5位点编码。Hor2位点编码大量分子量相同但组成不同的B组醇溶蛋白(B-hordein)。B-hordein的种类、数量和分布是影响大麦酿造、食用及饲养品质的重要因素之一。为深入了解B-hordein基因家族的结构和染色体组织,探明Hor2位点基因表达的发育调控机制,最终达到改良禾谷类作物籽粒品质的目的,本研究以青藏高原青稞为材料,采用同源克隆法,分别克隆B-hordein基因和启动子,通过原核生物表达验证B-hordein基因功能,并利用实时定量PCR探索B-hordein基因表达时空关系,取得如下研究结果: 1. 以具有特殊B组醇溶蛋白亚基组成的9份青藏高原青稞为材料,根据GenBank中三个B-hordein基因序列(GenBank No. X03103, X53690和X53691)设计一对引物,通过PCR扩增,获得23个B-hordein基因克隆并对其进行了序列分析。核苷酸序列分析表明,所有克隆均包含完整的开放阅读框。有11个克隆都存在一个框内终止密码子,推测这11个克隆可能是假基因。推测的氨基酸序列分析表明,所有大麦B-hordein具有相似的蛋白质基本结构,均包括一个高度保守的信号肽、中间重复区以及C-端结构域。不同大麦种重复区内重复基元的数目有较大差异。青稞材料Z07–2和Z26的B-hordeins仅具有12个重复基元结构,更接近于野生大麦。这些重复基元数目的差异导致了重复区序列长度和结构的变异。这种现象极可能是由于醇溶谷蛋白基因在进化过程中染色体的不平衡交换或复制滑动所造成的。对所克隆基因和禾本科代表性醇溶谷蛋白基因进行聚类分析,结果表明所有来自栽培大麦的B-hordeins聚类成一个亚家族,来自野生大麦的B-hordeins以及普通小麦的LMW-GS聚类成另外一个亚家族,表明这两个亚家族的成员存在显著差异。此外,我们发现B-hordein基因推测的C-末端序列具有一些有规律的特征:即具有相同C-末端序列的B-hordein基因在系统发生树中聚类为同一个亚组(除BXQ053,BZ09-1,BZ26-5分别单独聚为一类外)。这个特征将有助于我们对所有B组醇溶蛋白基因家族成员进行分类,避免了在SDS-PAGE电泳图谱上仅依靠大小分类的局限性。 2. 根据上述克隆的青稞B-hordein基因的5’端序列设计三条基因特异的反向引物,以青稞Z09和Z26的基因组DNA为模板,采用SON-PCR和TAIL-PCR技术分离克隆出8个B-hordein基因的上游调控序列(命名为Z09P和Z26P)。序列分析表明,推测的TATA box位于–80 bp,CAAT–like box位于–140 bp处。此外,Z09P和Z26P中有六个序列在–300 bp处均存在一个由高度保守的EM基序和类GCN4基序构成的胚乳盒(Endosperm Box,EB),在约–560 bp处存在一个胚乳盒类似结构。而Z09P-2和Z26P-3不存在保守的胚乳盒或其类似结构,预示着这两个启动子所调控的基因表达可能受不同类型反式作用因子的调节,推测该启动子对基因的表达调控具有多样性。 3. 将B-hordein基因的开放阅读框定向克隆到表达载体pET-30a中,将其导入大肠杆菌表达菌株BL21中进行外源基因的诱导表达以验证所克隆基因的功能。结果表明仅含重组子pET-BZ07-2和pET-BZ26-5的BL21细菌有目的表达蛋白产生。在诱导3 h时的蛋白表达量最高;3 mM IPTG诱导的蛋白表达量要高于1 mM IPTG诱导的表达量。这为分离纯化B-hordein蛋白以及进一步研究其对大麦籽粒品质的影响奠定基础。 4. 根据从青稞Z09和Z26中分离克隆的B-hordein基因序列设计一对基因特异的引物,同时,选择大麦α-微管蛋白基因(GenBank no. U40042)为看家基因并设计特异引物,利用实时荧光定量PCR检测了青稞籽粒4个胚乳发育时间段的B-hordein基因表达,荧光定量结果显示:两份材料中B-hordein基因的表达量均随发育过程的进行而逐渐升高。Z09中B-hordein基因在开花后7天开始转录,而Z26开花4天后就有低水平B-hordein的表达,这表明Z26中B-hordein基因可能比Z09表达的较早或者Z09中B-hordein基因表达水平较低以致于不能被检测到。此外,在4个不同的胚乳发育时期中,Z26中B-hordein基因的表达量均高于Z09材料。在开花12天到18天的过程中,Z09和Z26中B-hordein基因的表达水平有一个急剧性的升高。这说明在不同胚乳发育时期,Hor2位点的B-hordein等位基因变异体存在mRNA的差异表达。 Seed endosperm storage proteins in higher plants are the main resources of nitrogen for germinating and plant proteins for human and animals. Barley prolamins (also called hordeins) are the major storage proteins in the endosperm and account for 50–60% of total proteins. Hordeins are classically divided into three groups: sulphur-rich (B, γ-hordeins), sulphur-poor (C-hordeins) and high molecular weight (HMW, D-hordeins) hordeins based on the size and composition. B-hordeins and C-hordeins are two major groups and each respectively account for about 70-80% and 10-12% of the total hordein fraction in barley endosperm. Genetic analysis showed that B-, C-, C-, γ-hordeins are encoded by Hor2, Hor1, Hor3 and Hor5 locus on the chromosome 1H (5). Hor2 locus is rich in alleles that encode numerous heterogeneous B-hordein polypeptides. It is reported that B-hordein species, quantity and distribution are significant factors affecting malting, food and feed quality of barley. To understand comprehensively the structure and organization of B-hordein gene family in hull-less barley and explore the developmental control mechanisms of Hor2 locus gene expression and eventually to better exploitation in crop grain quality improvement, we isolated and cloned B-hordein genes and promotors of hull-less barley from Qinghai-Tibet Plateau by PCR, and testified their expression founction in bacteria expression system and explore their spatial and temporal expression pattern by quantitative real time PCR. Our results are as followed, 1. Twenty-three copies of B-hordein gene were cloned from nine hull-less barley cultivars of Qinghai-Tibet Plateau with special B-hordein subunits and molecularly characterized by PCR, based on three B-hordein genes published previously (GenBank No. X03103, X53690 and X53691). DNA sequences analyses confirmed that the six clones all contained a full-length coding region of the barley B-hordein genes. Eleven clones all contain an in-frame stop codon and they are probably pseudogenes. The analysis of deduced amino acid sequences of the genes shows that they have similar structures including signal peptide domain, central repetitive domain, and C-terminal domain. The number of the repeats was largerly variable and resulted in polypeptides in different sizes or structures among the genes. Twelve such repeated motifs were found in Z07–2 and Z26, and they are close to those of the wild barleys, and it is most probably caused by unequal crossing-over and/or slippage during replication as suggested for the evolution of other prolamins. The relatedness of prolamin genes of barley and wheat was assessed in the phylogenetic tree based on their polypeptides comparison. Our phylogenetic analysis suggested that the predicted B-hordeins of cultivated barley formed a subfamily, while the B-hordeins of wild barleys and the two most similar sequences of LMW-GS of T. aestivum formed another subfamily. This result indicated that the members of the two subfamilys have a distinctive difference. In addition, we found the B-hordeins with identical C-terminal end sequences were clustered into a same subgroup (except BXQ053,BZ09-1 and BZ26-5 as a sole group, respectively), so we believe that B-hordein gene subfamilies possibly can be classified on the basis of the conserved C-terminal end sequences of predicted polypeptide and without the limit of SDS-PAGE protein banding patterns. 2. The specific primers were designed according to the published sequences of barley B-hordein genes from Z09 and Z26. Using total DNA isolated from them as the templates, eight clones (designated Z09Pand Z26P) of upstream sequences of the known B-hordein genes was obtained by TAIL-PCR and SON-PCR. Sequences analysis shows that the putative TATA box was present at position –80 bp and CAAT-like box at position –140 bp. Besides, a putative Endosperm Box including an Endosperm Motif (EM) and a GCN4-Like Motif was found at position –300 bp in six clones, and another Endosperm-like box was found at positon –560 bp. While the Endosperm Box or Endosperm-like box was not found in Z09P-2 and Z26P-3. This may indicate that gene expression drived by the two promtors was probably controlled by different trans-acting factors and the genetic control mechanism of corresponding gene expression may be diverse. 3. The B-hordein genic region coding for the mature peptide was cloned into expression vector pET-30a and transformed into bacterial strain BL21 for identifying gene expression fountion. Protein SDS–PAGE analysis showed that only the transformed lysate with the pET-BZ07-2 and pET-BZ26-5 constructs produced proteins related to B-group hordeins of barley, and the mounts of proteins induced by 3 mM IPTG and 3 h were higher than other conditions. This established a base for isolating and putifying B-hordein and further exploring their effects on barley grain quality. 4. The gene-specific primers of B-hordein genes from Z09 and Z26 were used for the quantification of B-hordein gene expression. The α-tubulin gene from Hordeum vulgare subsp. vulgare (GenBank accession number U40042) was used as a control gene. The result shows the transcription of the B-hordein genes in Z09 was found 7 days after flowering, while the transcription of the B-hordein genes in Z26 was found 4 days after flowering, but at a very low level, and it suggested that the B-hordein genes in Z26 probably expressed earlier than those in Z09, or the B-hordein genes in Z09 expressed at so a lower level than Z26 that it can not detected. In addition, B-hordein genes in Z26 accession showed higher expression levels than those in Z09 in four developing stages. Furthermore, a progressive increase in the expression levels of the B-hordein genes between 12 and 18 days after anthesis was observed in both Z09 and Z26. It implies that the B-hordein allelic variants encoded by Hor2 locus exist the differential expression in mRNA levels of during barley endosperm development.
Resumo:
扇贝养殖是我国传统的海水养殖产业,但自1997 年以来,养殖扇贝陆续爆发的大规模死亡,不但造成了巨大的经济损失,而且严重影响了该产业的健康发展。扇贝病害的不断爆发以及病因的多样性迫切要求制定新的疾病防治措施和开发新型的抗菌物质。 从扇贝自身的免疫防御因子入手,筛选和克隆参与免疫防御的功能基因,一方面可以研究抗病功能基因在病原感染或环境胁迫条件下的表达规律,深入探讨扇贝的免疫防御机制,并可作为抗病良种选育的分子标记,指导扇贝的遗传改良和抗病品系的培育;另一方面,可对抗菌效应物实现重组表达,开发新型的病害预防治疗制剂,取代目前普遍使用的抗生素和化学药物。抗菌效应物是机体在免疫应答过程中产生的多肽类物质,对侵入生物体内的细菌、病毒具有很强的免疫杀灭作用,对抗菌效应物的研究有助于深入了解机体先天性免疫防御的机制。 本研究采用大规模EST测序方法,结合cDNA末端快速扩增(RACE)技术,从海湾扇贝血淋巴中克隆到了大防御素基因(big defensin, AiBD)的全长cDNA序列,该cDNA全长为531 bp,其中5' 非编码区(UTR)为24 bp,开放阅读框(Open Reading Frame, ORF)含有369 bp,编码122 个氨基酸残基;随后为138-bp 的3' UTR,包括一个多聚腺苷酸信号序列(AATAAA)和ploy A尾巴。分析表明,海湾扇贝大防御素是以前体的形式合成,前体分子包括信号肽、前域和成熟肽三部分。采用Northern blot方法,以DIG标记的DNA探针检测了 AiBD mRNA在不同组织中的表达。结果发现,AiBD 基因的转录本主要在血淋巴中表达,在鳃中也有微量的表达,而在外套膜、闭壳肌、性腺及肝胰腺中检测不到杂交信号。采用QRT-PCR(quantitative real time PCR)对鳗弧菌感染后海湾扇贝血淋巴中AiBD mRNA 的表达量进行了检测,结果发现在感染后8 h 内, AiBD mRNA 的相对表达量平缓升高;随着刺激时间的增长,AiBD基因的mRNA表达量急剧增加,在刺激后16 h 和32 h 分别达到了空白组的72.3 倍和131.1 倍。为了研究海湾扇贝大防御素的抗菌活性,将其成熟肽编码区克隆到毕赤酵母表达载体pPIC9K并实现了重组表达。抑菌实验表明,重组AiBD具有广谱的抗菌活性,其对供试的三株革兰氏阳性菌(藤黄微球菌、溶壁微球菌、金黄色葡萄球菌)都表现出显著的抗菌活性,而对革兰氏阴性菌(鳗弧菌、亮弧菌)的抑菌活性则相对较弱;此外,重组AiBD对表达宿主也表现出杀菌活性,证明其具有抗真菌活性。 根据栉孔扇贝G 型溶菌酶基因的cDNA序列,利用构建的Genome Walking 文库获得了栉孔扇贝G 型溶菌酶基因的全长序列,该基因序列全长为8131 bp,由六个外显子和五个内含子组成。六个外显子长度分别为55 bp,60 bp,90 bp,113 bp,145 bp 和140 bp;五个内含子的长度分别为1126 bp,2161 bp,2744 bp,750 bp和592 bp;内含子的两侧都具有RNA正确剪接所必需的识别位点(GT/AG)。利用TRANSFAC 软件对栉孔扇贝G 型溶菌酶基因的5' 侧翼序列分析发现,该基因的5' 侧翼具有 TATA box 和 CAAT box 的共有序列;此外,在该基因的5' 侧翼发现了C/EBP、NF-κB、OCT-1 和 NF-IL6 等参与免疫基因激活的转录因子潜在结合位点。采用Northern blot方法,以生物素标记的RNA 探针检测了栉孔扇贝G 型溶菌酶基因在不同组织中的表达。结果发现,该基因的转录本主要在鳃、性腺及肝胰腺中表达,在血细胞和外套膜中也有微量的的表达,而在闭壳肌中检测不到杂交信号,这表明栉孔扇贝G 型溶菌酶可能兼备参与机体免疫防御和消化的功能。为了研究栉孔扇贝G 型溶菌酶的抗菌活性,将其成熟肽编码区克隆到毕赤酵母表达载体pPIC9K并实现了重组表达。抑菌实验表明,重组产物具有显著的抗阳性菌活性,其对供试的藤黄微球菌、溶壁微球菌表现出明显的抑制作用,对金黄色葡萄球菌未检测到抑制活性;而对革兰氏阴性菌仅表现出微弱的抑菌活性(亮弧菌和鳗弧菌),对大肠杆菌则基本无抑制活性。