964 resultados para Taijitu curve di Bézier arte matematica religione
Resumo:
Negli ultimi anni, è aumentato notevolmente l'interesse per piante e prodotti vegetali, e composti da essi derivati od estratti, in alternativa ai conservanti chimici per prevenire o ritardare lo sviluppo microbico negli alimenti. Questo deriva dalla percezione negativa, ormai diffusa a livello pubblico, nei confronti di sostanze di sintesi che sono ampiamente utilizzate come conservanti nell’industria alimentare. Sono stati effettuati diversi studi sull’attività antimicrobica di questi composti negli alimenti, anche se il loro utilizzo a livello industriale è limitato. Ciò dipende dalla difficile standardizzazione di queste sostanze, dovuta alla variabilità della matrice alimentare che ne può alterarne l’attività antimicrobica. In questa sperimentazione si sono utilizzati l’olio essenziale di Sateureja montana e l’estratto di Cotinus coggygria e sono state fatte delle prove preliminari, determinandone le componenti volatili tramite gas-cromatografia abbinata a microestrazione in fase solida. Sono stati selezionati un ceppo di Listeria monocytogenes (Scott A) e uno di Saccharomyces cerevisiae (SPA), e sono stati utilizzati per realizzare curve di morte termica in sistema modello e in sistema reale. Dai risultati ottenuti si può affermare che Satureja montana e Cotinus coggygria possono essere presi in considerazione come antimicrobici naturali da impiegare per la stabilizzazione di alimenti, nonché per ridurre l’entità dei trattamenti termici atti a salvaguardare le proprietà nutrizionali ed organolettiche di alimenti, come ad esempio succhi di frutta, garantendone la sicurezza e qualità microbiologica.
Resumo:
In una 3-varietà chiusa è possibile individuare alcune superfici (dette di Heegaard) tali che, tagliando la 3-varietà lungo una di queste, essa si spezza in due corpi con manici che hanno per bordo tale superficie. La tesi propone alcuni recenti risultati circa l'interazione tra la topologia della 3-varietà, il gruppo di automorfismi delle sue superfici di Heegaard e complessi simpliciali costruiti a partire dalle curve su tali superfici.
Resumo:
L'intento della tesi è realizzare un'unità didattica rivolta ad una classe di terza media, incentrata sullo studio della simmetria, partendo dall'osservazione delle arti decorative, nella fattispecie dei fregi, fino ad approdare all'analisi di particolari composizioni musicali. Nel primo capitolo ci proponiamo di classificare i \textit{gruppi dei fregi}, ovvero i sottogruppi discreti dell'insieme delle isometrie del piano euclideo in cui le traslazioni formano un sottogruppo ciclico infinito. Nel secondo capitolo trasferiremo i concetti introdotti nel primo capitolo dal piano euclideo a quello musicale. Nel terzo capitolo troveremo la descrizione della proposta didattica costruita sulla base dei contenuti raccolti nei primi due capitoli. Tale laboratorio è stato ideato nel tentativo di assolvere un triplice compito: fornire uno strumento in più per lo studio matematico delle isometrie e delle simmetrie, mostrare in che modo un processo fisico come la musica può essere rappresentato sul piano cartesiano come funzione del tempo, offrendo un primo assaggio di ciò che molti ragazzi dovranno affrontare nel prosieguo dei loro studi e infine introdurre lo studente ad un approccio più critico e ``scientifico'' all’arte in generale, e in particolare alla musica.
Resumo:
Dopo aver definito tutte le proprietà, si classificano gli schemi di suddivisione per curve. Si propongono, quindi, degli schemi univariati per la compressione di segnali e degli schemi bivariati per lo scaling e la compressione di immagini digitali.
Resumo:
In questa tesi si esaminano alcune questioni riguardanti le curve definite su campi finiti. Nella prima parte si affronta il problema della determinazione del numero di punti per curve regolari. Nella seconda parte si studia il numero di classi di ideali dell’anello delle coordinate di curve piane definite da polinomi assolutamente irriducibili, per ottenere, nel caso delle curve ellittiche, risultati analoghi alla classica formula di Dirichlet per il numero di classi dei campi quadratici e delle congetture di Gauss.
Resumo:
La tesi è orientata ad elaborare un’introduzione alla geometria algebrica particolarmente rivolta agli strumenti di algebra commutativa, al fine di affrontare i problemi descritti nell'ultimo paragrafo. A partire da testi basilari per l’argomento, come [A, MD] e [Ha], si introdurrà la nozione di spettro di un anello e si andranno a studiare vari casi che costituiscono una buona base per avere un panorama delle possibili strutture che si generano come schemi associati ad un anello e se ne studieranno le proprietà caratteristiche. In particolare, si analizzeranno proprietà di irriducibilità, finitezza e altro, in connessione con quelle degli anelli commutativi. Una particolare attenzione viene poi rivolta agli schemi 0-dimensionali, alle loro diverse immersioni negli spazi proiettivi ed ai problemi aperti ad essi connessi (es. determinazione della funzione di Hilbert). In questo ambito molti problemi aperti rimangono anche per questioni di semplice formulazione (ad esempio sulla dimensione di particolari spazi lineari di curve piane definite dall'imposizione di singolarità lungo schemi 0-dimensionali).
Resumo:
Trattazione sulla superficie quadrica rigata nel proiettivo, con cenni sulle quadriche in generale nello spazio affine e proiettivo e sull'unicità della superficie quadrica liscia nello spazio proiettivo complesso. Descrizione della quadrica rigata tramite la Mappa di Segre e tramite la proiezione da un suo punto su di un piano, studio di come ricavare tale quadrica da un piano e descrizione delle curve su di essa.
Resumo:
Le funzioni polinomiali possono essere utilizzate per approssimare le funzioni continue. Il vantaggio è che i polinomi, le loro derivate e primitive, possono essere rappresentati in maniera semplice attraverso i loro coefficienti ed esistono algoritmi stabili e veloci per valutarli. Inoltre gli spazi polinomiali godono di numerose proprietà importanti. In questo lavoro ci occuperemo di altri spazi funzionali, noti in letteratura come spazi di Chebyshev o polinomi generalizzati, per ragioni di riproducibilità. Infatti ciò che si ottiene attraverso i polinomi è soltanto una approssimazione che spesso risulta essere insufficiente. E' importante, quindi, considerare degli spazi in cui sia possibile avere una rappresentazione esatta di curve. Lo studio di questi spazi è possibile grazie alla potenza di elaborazione degli attuali calcolatori e al buon condizionamento di opportune basi di rappresentazione di questi spazi. Negli spazi polinomiali è la base di Bernstein a garantire quanto detto. Negli spazi di Chebyshev si definisce una nuova base equivalente. In questo lavoro andremo oltre gli spazi di Chebyshev ed approfondiremo gli spazi di Chebyshev a tratti, ovvero gli spazi formati dall'unione di più spazi del tipo precedente. Si dimostrerà inoltre l'esistenza di una base a tratti con le stesse proprietà della base di Bernstein per gli spazi polinomiali.
Resumo:
Questa tesi presenta un metodo generale per la costruzione di curve spline generalizzate di interpolazione locale. Costruiremo quest'ultime miscelando polinomi interpolanti generalizzati a blending function generalizzate. Verrano inoltre verificate sperimentalmente alcune delle proprietà di queste curve.
Resumo:
La tesi si prefigge di definire la molteplicità dell’intersezione tra due curve algebriche piane. La trattazione sarà sviluppata in termini algebrici, per mezzo dello studio degli anelli locali. In seguito, saranno discusse alcune proprietà e sarà proposto qualche esempio di calcolo. Nel terzo capitolo, l’interesse volgerà all’intersezione tra una varietà e un’ipersuperficie di uno spazio proiettivo n-dimensionale. Verrà definita un’ulteriore di molteplicità dell’intersezione, che costituirà una generalizzazione di quella menzionata nei primi due capitoli. A partire da questa definizione, sarà possibile enunciare una versione estesa del Teorema di Bezout. L’ultimo capitolo focalizza l’attenzione nuovamente sulle curve piane, con l’intento di studiarne la topologia in un intorno di un punto singolare. Si introduce, in particolare, l’importante nozione di link di un punto singolare.