955 resultados para TRIP STEELS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of additions of Nb, A1 and Mo to Fe-C-Mn-Si TRIP steels on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. Laboratory simulations of continuous cooling during TMP were performed using a quench deformation dilatometer, while laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. From this a comprehensive understanding of the structural and kinetic aspects of the bainite transformation in these types of TRIP steels has been developed. All samples were characterised using optical microscopy and XRD. The relationships between the morphology of bainitic structure, volume fraction, stability of RA and mechanical properties were investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The widespread introduction of multiphase sheet steels in the automotive industry has led to considerable interest in the fatigue properties of these materials. The different microstructural phases within matelials such as TRIP steels can influence the fatigue behaviour due to the manner in which the cyclic strain is accommodated within these phases. In this study fully reversed straincontrolled fatigue tests were perfonnrmed on a commercially-produced uncoated TRIP 780 steel both in the as-received and 20 % prestrained condition. The pre-strained TRIP steel showed significant cyclic softening at higher strain amplitudes, whereas some initial work hardening was observed at lower strain amplitudes before cyclic softening. The cyclic stabilised strength of the pre-strained TRIP steel was independent of strain amplitude, while the cyclic stabilised strength of the as-received TRIP steel increased with strain amplitude. Transmission Electron Microscopy TEM was used to examine the effect of the cyclic deformation on the microstructure of the different conditions, with the differences in fatigue behaviour explained based on the differences in the deformation structure formed within the steel (i.e. dislocation density and sub-structure and microband formation).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of a bake-hardening (BH) treatment on the microstructure and mechanical properties has been studied in C-Mn-Si TRansformation Induced Plasticity (TRIP) and Dual Phase (DP) steels after: (i) thermomechanical processing (TMP) and (ii) intercritical annealing (IA). The steels were characterized using X-ray diffraction, transmission electron microscopy (TEM) and three-dimensional atom probe tomography (APT). All steels showed high BH response. however, the DP and trip steels after IA/BH showed the appearance of upper and lower yield points, while the stress-strain behavior of the trip steel after TMP/BH was still continuous. This was due to the higher volume fraction of bainite and more stable retained austenite in the TMP/BH steel, the formation of plastic deformation zones with high dislocation density around the "as-quenched” martensite and “TRIP” martensite in the IA/BH DP steel and IA/BH TRIP steel, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The performance of multiphase steels with high strength and improved toughness or ductility, such as intercritically annealed dual-phase (DP) and transformation-induced plasticity (TRIP) steels, is of key importance to the automotive industry. In this work we have considered the entire manufacturing process and the effects of this on the final product performance. These steels are formed to produce the required final shape and then the car is paint baked. In this work we also consider the effect of cold working and bake hardening on the fatigue life of the components.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Development of modern steels consisting of complex or nano-scale microstructures with advanced properties requires in-depth understanding of the mechanisms responsible for their microstructure/property relationships. The evolution of microstructure during processing is often associated with various changes taking place at atomic level. These include solute distribution between phases as a result of phase transformations, formation of atmospheres at dislocations, clustering and precipitation phenomena due to various thermo-mechanical processing schedules and/or heat treatments. Atom probe tomography (APT) is invaluable tool for gaining insight into events at atomic scale determining the steel properties. This technique also contributes to the fundamental understanding of phase transformations, which is essential for nano-scale engineering of modern steels and optimization of their performance. In this work application of APT to study solute segregation, clustering and precipitation in TRIP steels and nanostructured bainitic steels after isothermal heat-treatment and after thermomechanical processing will be discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of several commercially-produced multiphase steels was studied; including dual-phase (DP) and transformation induced plasticity (TRIP). In addition, a novel TRIP980 hybrid microstructure was examined that consisted of coarse ferrite grains along with low temperature bainite regions interspersed with retained austenite. Fully reversed strain controlled fatigue tests were conducted on the different steels to determine the cyclic stress response and strain to failure. The effects of the cyclic deformation on the microstructures were analysed using electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). Results showed that the initial cyclic hardening behaviour and low cyclic softening ratio observed in the TRIP steels was not necessarily due to austenite to martensite transformation. Differences between the austenite transformation behaviour of the conventional and novel hybrid TRIP microstructures was related to the different surrounding phases and the size of the retained austenite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Positive The influence of strain-rate on the room temperature mechanical properties of the Dual-Phase and Transformation Induced Plasticity (TRIP) steels was investigated.The results showed that both the plastic strain, and strength properties increased with increasing strain rates at high strain rates.At strain rates lower than approximateil 1s ~ (-1) the properties no longer have an advantageous proportionality to strain rate and remain strain rate neutral.Possible explanations are offered for trends exhibited, in terms of thermal and athermal considerations, in relation to the respective microstructures of the two steels

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The unloading behavior was compared for three different steel grades: a dual-phase steel, a transformation-induced plasticity steel, and a twinning-induced plasticity steel. Steels that harden by phase transformation or deformation twinning exhibited a smaller component of microplastic strain during unloading and a smaller reduction in the chord modulus compared to the conventional hardening steel. As a result, unloading is closer to pure elastic unloading when the TRIP effect or TWIP effect is active.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The multi-phase, metastable, and multi-scale (M3) constitution of a novel transformation-induced plasticity (TRIP) steel (Fe-0.17C-6.5Mn-1.1Al-0.22Mo-0.05Nb, wt pct) was designed through thermodynamic calculations combined with experimental analysis. In this study, Mo and Nb microalloying was used to control the fraction of retained austenite and its mechanical stability during tensile deformation and to improve the yield strength. Thermodynamic calculations were developed to determine the critical annealing temperature, at which a large fraction of retained austenite (~38 pct) would be obtained through the effects of solute enrichment. The experimental observation was in good agreement with the predicted results. According to the critical annealing temperature, such an ultrafine (<200 nm) M3, microstructure with optimum mechanical stability was successfully achieved. The results of this work demonstrated the superior performance with improved yield strength of 1020 to 1140 MPa and excellent ductility (>30 pct), as compared with other TRIP steels. Both angle-selective backscatter and electron backscatter diffraction techniques were employed to interpret the transformation from the deformed martensitic laths to the ultrafine austenite and ferrite duplex structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The multi-phase structure of a novel low-alloy transformation induced plasticity (TRIP) steel was designed through experimental analysis. The evolutions of both microstructure and mechanical properties during the two-stage heat treatment were analyzed. The phase transformations during the intercritical annealing and the isothermal bainitic transformation were investigated by means of dilatometry. It was shown that two types of C diffusion were detected during intercritical annealing and a complex microstructure was formed after heat treatment. The processing parameters were selected in such a way to obtain microstructures with systematically different volume fractions of ferrite, bainite and retained austenite. The volume fractions of ferrite and retained austenite were found to be two main factors controlling the ductility. Furthermore, a high volume fraction of C-rich retained austenite, which was stabilized at room temperature, was the origin of a TRIP effect. The resulting material demonstrates a significant improvement in the ultimate tensile strength (1077. MPa) with good uniform elongation (22.5%), as compared to conventional TRIP steels. © 2014 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

TRIP (Transformation Induced Plasticity) and DP (Dual-Phase) steels are written in a new series of steels which present excellent mechanical properties. As for microstructure aspect, TRIP steels consist on a ferrite matrix with a second phase dispersion of other constituents, such as bainite, martensite and retained austenite, while dual-phase steels consist on martensite dispersion in a ferrite matrix. In order to identify the different microconstituents present in these materials, microstructure characterization techniques by optical microscopy (using different etchants: LePera, Heat-Tinting and Nital) and scanning electron microscopy were carried out. This being so, microstructures were correlated with mechanical properties of materials, determined by means of tensile tests. It is concluded that steels assisted by TRIP effect have a strength and elongation relation higher than the dual-phase one. With microstructure characterization, it was observed phases present in these materials microstructure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the second half of the last century the automobile industries suffered from the petroleum crisis caused mainly by the wars in the Middle East. These crises led the automakers rethink their vehicles. One of the most important events after that was the adoption of new steels by the industry. One example is the TRIP steels (Transformationinduced plasticity). It is known that the macroscopic behavior of a material is strongly dependent on its microstructure and therefore the quantitative metallography is important to understand and relate the material properties to its microstructure. In this work, different specimens of TRIP steels were etched using LePera reagent. The obtained images were analyzed using digital processing. Using the ImageJ software the methods threshold and watershed were studied as well as a comparison with the ASTM E562 standard. The methods were compared and finally the morphological characteristics and volumetric fraction of the retained austenite and martensite phases were analyzed. The results showed that the threshold led to a higher number of identified grains with lower mean area and total area fraction than the watershed method and ASTM standard

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nonlinear unloading behavior of three different commercial dual-phase steels (DP780 grade equivalent) was examined. These steels exhibited small variations in chemical composition (0.07 to 0.10 mass percent carbon) and martensite volume fraction (0.23 to 0.28), and they demonstrated similar hardening behavior. Uniaxial loading-unloading-loading tests were conducted at room temperature and quasi-static strain rates between engineering strains of 0.5 and 8%. Steel microstructures were examined using electron backscatter diffraction and nanoindentation techniques. The microplastic component of the unloading strain exhibited no dependence on the martensite volume fraction or the ferrite grain size within the small range encountered in this investigations. Instead, the magnitude of the microplastic component of the unloading strain increased as the strength ratio between the martensite and ferrite phases increased. Correspondingly, the apparent unloading modulus, or chord modulus, exhibited a greater reduction for equivalent increments of strain hardening as the strength ratio increased. These results suggest that springback can be reduced in structures containing two ductile phases if the strength ratio between the harder and softer phases is reduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A particle-based method for multiscale modeling of multiphase materials such as Dual Phase (DP) and Transformation Induced Plasticity (TRIP) steels has been developed. The multiscale Particle-In-Cell (PIC) method benefits from the many advantages of the FEM and mesh-free methods, and to bridge the micro and macro scales through homogenization. The conventional mesh-based modeling methods fail to give reasonable and accurate predictions for materials with complex microstructures. Alternatively in the multiscale PIC method, the Lagrangian particles moving in an Eulerian grid represent the material deformation at both the micro and macro scales. The uniaxial tension test of two phase and three-phase materials was simulated and compared with FE based simulations. The predictions using multiscale PIC method showed that accuracy of field variables could be improved by up to 7%. This can lead to more accurate forming and springback predictions for materials with important multiphase microstructural effects.