983 resultados para TRANSCRIPTIONAL CONTROL
Resumo:
The SSN3 and SSN8 genes of Saccharomyces cerevisiae were identified by mutations that suppress a defect in SNF1, a protein kinase required for release from glucose repression. Mutations in SSN3 and SSN8 also act synergistically with a mutation of the MIG1 repressor protein to relieve glucose repression. We have cloned the SSN3 and SSN8 genes. SSN3 encodes a cyclin-dependent protein kinase (cdk) homolog and is identical to UME5. SSN8 encodes a cyclin homolog 35% identical to human cyclin C. SSN3 and SSN8 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. Using an immune complex assay, we detected protein kinase activity that depends on both SSN3 and SSN8. Thus, the two SSN proteins are likely to function as a cdk-cyclin pair. Genetic analysis indicates that the SSN3-SSN8 complex contributes to transcriptional repression of diversely regulated genes and also affects induction of the GAL1 promoter.
Resumo:
Recent findings relating to SOX transcription factors indicate that defects in organogenesis can be caused not only by impairment of the biochemical properties of transcription factors but also, in some cases, by deficient nuclear import. In addition, experimentally interfering with the nuclear export signals of some SOX factors has now been found to cause developmental defects. Controlling the balance of nuclear import and export might be a common means by which transcription factor activity can be regulated during development, and defects in these processes might underlie a broader spectrum of inherited developmental disorders.
Resumo:
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs.
Resumo:
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.
Resumo:
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.
Resumo:
RESUMO:O glicosilfosfatidilinositol (GPI) é um complexo glicolipídico utlizado por dezenas de proteínas, o qual medeia a sua ancoragem à superfície da célula. Proteínas de superfície celular ancoradas a GPI apresentam várias funções essenciais para a manutenção celular. A deficiência na síntese de GPI é o que caracteriza principalmente a deficiência hereditária em GPI, um grupo de doenças autossómicas raras que resultam de mutações nos genes PIGA, PIGL, PIGM, PIGV, PIGN, PIGO e PIGT, os quais sao indispensáveis para a biossíntese do GPI. Uma mutação pontual no motivo rico em GC -270 no promotor de PIGM impede a ligação do factor de transcrição (FT) Sp1 à sua sequência de reconhecimento, impondo a compactação da cromatina, associada à hipoacetilação de histonas, e consequentemente, impedindo a transcrição de PIGM. Desta forma, a adição da primeira manose ao GPI é comprometida, a síntese de GPI diminui assim como as proteínas ligadas a GPI à superficie das células. Pacientes com Deficiência Hereditária em GPI-associada a PIGM apresentam trombose e epilesia, e ausência de hemólise intravascular e anemia, sendo que estas duas últimas características definem a Hemoglobinúria Paroxística Nocturna (HPN), uma doença rara causada por mutações no gene PIGA. Embora a mutação que causa IGD seja constitutiva e esteja presente em todos os tecidos, o grau de deficiência em GPI varia entre células do mesmo tecido e entre células de tecidos diferentes. Por exemplo nos granulócitos e linfócitos B a deficiência em GPI é muito acentuada mas nos linfócitos T, fibroblastos, plaquetas e eritrócitos é aproximadamente normal, daí a ausência de hemólise intravascular. Os eventos transcricionais que estão na base da expressão diferencial da âncora GPI nas células hematopoiéticas são desconhecidos e constituem o objectivo geral desta tese. Em primeiro lugar, os resultados demonstraram que os níveis de PIGM mRNA variam entre células primárias hematopoiéticas normais. Adicionalmente, a configuração dos nucleossomas no promotor de PIGM é mais compacta em células B do que em células eritróides e tal está correlacionado com os níveis de expressão de PIGM, isto é, inferior nas células B. A presença de vários motivos de ligação para o FT específico da linhagem megacariocítica-eritróide GATA-1 no promotor de PIGM sugeriu que GATA-1 desempenha um papel regulador na sua transcrição. Os resultados mostraram que muito possivelmente GATA-1 desempenha um papel repressor em vez de activador da expressão de PIGM. Resultados preliminares sugerem que KLF1, um factor de transcrição restritamente eritróide, regula a transcrição de PIGM independentemente do motivo -270GC. Em segundo lugar, a investigação do papel dos FTs Sp demonstrou que Sp1 medeia directamente a transcrição de PIGM em ambas as células B e eritróide. Curiosamente, ao contrário do que acontece nas células B, em que a transcrição de PIGM requer a ligação do FT geral Sp1 ao motivo -270GC, nas células eritróides Sp1 regula a transcrição de PIGM ao ligar-se a montante e não ao motivo -270GC. Para além disso, demonstrou-se que Sp2 não é um regulador directo da transcrição de PIGM quer nas células B quer nas células eritróides. Estes resultados explicam a ausência de hemólise intravascular nos doentes com IGD associada a PIGM, uma das principais características que define a HPN. Por último, resultados preliminares mostraram que a repressão da transcrição de PIGM devida à mutação patogénica -270C>G está associada com a diminuição da frequência de interacções genómicas em cis entre PIGM e os seus genes “vizinhos”, sugerindo adicionalmente que a regulação de PIGM e desses genes é partilhada. No seu conjunto, os resultados apresentados nesta tese contribuem para o conhecimento do controlo transcricional de um gene housekeeping, específico-detecido, por meio de FTs genéricos e específicos de linhagem.-------------ABSTRACTC: Glycosylphosphatidylinositol (GPI) is a complex glycolipid used by dozens of proteins for cell surface anchoring. GPI-anchored proteins have various functions that are essential for the cellular maintenance. Defective GPI biosynthesis is the hallmark of inherited GPI deficiency (IGD), a group of rare autosomal diseases caused by mutations in PIGA, PIGL, PIGM, PIGV, PIGN, PIGO and PIGT, all genes indispensable for GPI biosynthesis. A point mutation in the -270GC-rich box in the core promoter of PIGM disrupts binding of the transcription factor (TF) Sp1 to it, imposing nucleosome compaction associated with histone hypoacetylation, thus abrogating transcription of PIGM. As a consequence of PIGM transcriptional repression, addition of the first mannose residue onto the GPI core and thus GPI production are impaired; and expression of GPI-anchored proteins on the surface of cells is severely impaired. Patients with PIGM-associated IGD suffer from life-threatening thrombosis and epilepsy but not intravascular haemolysis and anaemia, two defining features of paroxysmal nocturnal haemoglobinuria (PNH), a rare disease caused by somatic mutations in PIGA. Although the disease-causing mutation in IGD is constitutional and present in all tissues, the degree of GPI deficiency is variable and differs between cells of the same and of different tissues. Accordingly, GPI deficiency is severe in granulocytes and B cells but mild in T cells, fibroblasts, platelets and erythrocytes, hence the lack of intravascular haemolysis.The transcriptional events underlying differential expression of GPI in the haematopoietic cells of PIG-M-associated IGD are not known and constitute the general aim of this thesis. Firstly, I found that PIGM mRNA levels are variable amongst normal primary haematopoietic cells. In addition, the nucleosome configuration in the promoter of PIGM is more compacted in B cells than in erythroid cells and this correlated with the levels of PIGM mRNA expression, i.e., lower in B cells. The presence of several binding sites for GATA-1, a mega-erythroid lineage-specific transcription factor (TF), at the PIGM promoter suggested that GATA-1 has a role on PIGM transcription. My results showed that GATA-1 in erythroid cells is most likely a repressor rather than an activator of PIGM expression. Preliminary data suggested that KLF1, an erythroid-specific TF, regulates PIGM transcription but independently of the -270GC motif. Secondly, investigation of the role of the Sp TFs showed that Sp1 directly mediates PIGM transcriptional regulation in both B and erythroid cells. However, unlike in B cells in which active PIGM transcription requires binding of the generic TF Sp1 to the -270GC-rich box, in erythroid cells, Sp1 regulates PIGM transcription by binding upstream of but not to the -270GC-rich motif. Additionally, I showed that Sp2 is not a direct regulator of PIGM transcription in B and erythroid cells. These findings explain lack of intravascular haemolysis in PIGM-associated IGD, a defining feature of PNH. Lastly, preliminary work shows that transcriptional repression of PIG-M by the pathogenic -270C>G mutation is associated with reduced frequency of in cis genomic interactions between PIGM and its neighbouring genes, suggesting a shared regulatory link between these genes and PIGM. Altogether, the results presented in this thesis provide novel insights into tissuespecific transcriptional control of a housekeeping gene by lineage-specific and generic TFs.
Resumo:
Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.
Resumo:
L'ARN Polymérase III (Pol III) transcrit un ensemble de petits ARN non traduits impliqués dans des processus cellulaires tels que la biosynthèse des protéines, la maturation des ARNs ou le contrôle transcriptionnel. De ce fait, la Pol III joue un rôle important dans la régulation de la croissance et la prolifération cellulaire. L'initiation de la transcription par la Pol III nécessite l'interaction entre des facteurs de transcription et le complexe de la Pol III lui-même. Un sous- complexe de la Pol III, composé de 3 sous-unités, HsRPC3, HsRPC6 et HsRPC7 sert d'intermédiaire dans cette interaction. Dans cette étude, nous avons caractérisé une nouvelle sous-unité de la Pol III, HsRPC7-Like, homologue à HsRPC7. Nous avons montré que ces deux homologues se trouvent spécifiquement chez les vertébrés. Ils proviennent d'un ancêtre commun qui, après duplication il y a 600 millions d'années, a donné naissance à ces deux paralogues. Dans les cellules humaines, deux formes de Pol III coexistent : l'une contientt HsRPC7, l'autre HsRPC7-Like. Nous avons localisé, à l'échelle du génome entier, la présence de ces deux formes de Pol III dans des cellules humaines et dans le foie de souris. Les deux sous-unités ont démontré des caractéristiques identiques, suggérant qu'elles possèdent des fonctions similaires. Cependant, nous avons analysé les motifs d'expression des gènes codant pour RPC7 et RPC7-Like dans des lignées cellulaires dans des conditions variées telles que la concentration de sérum et la densité cellulaire, ainsi que les motifs d'expression dans le foie de souris et des cellules d'hépatocarcinome de souris. Nos résultats suggèrent que l'expression de ces deux sous-untiés varie en fonction de l'activité de prolifération de la cellule. - RNA polymerase III (Pol III) transcribes a set of genes coding for short untranslated RNAs involved in essential cellular processes as for example protein biosynthesis, RNA maturation, and transcriptional control. Thereby Pol III plays an important role in regulating cell growth and proliferation. Initiation of Pol III transcription requires interactions between transcription factors and the Pol III core complex. A Pol III sub-complex composed of three subunits, HsRPC3, HsRPC6, and HsRPC7 mediates this interaction. In this study, we have characterized a new Pol III subunit, HsRPC7-Like, an homologue of HsRPC7. We have shown that these two homologues are specific to vertebrates and originate from an ancestor gene that duplicated 600 mio years ago to give birth to two paralogues. In human cells, two forms of Pol III coexist, one containing HsRPC7 and the other HsRPC7-Like. We have localized, genome-wide, these two Pol III forms in human cells and mouse liver. Both subunits were found on all types of Pol III genes, suggesting that they share similar function. However, we analysed the expression patterns of the RPC7 and RPC7-Like coding genes under various conditions of serum concentration and cell density in different cell lines, as well as expression patterns in mouse liver and mouse hepatocarcinoma cells. Our results suggest that the expression of these two subunits varies with the proliferation rate of the cell.
Resumo:
The global response regulator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the quorum sensing signal molecule N-butanoyl-homoserine-lactone (C4-HSL) and hence the synthesis of several C4-HSL-dependent virulence factors, including hydrogen cyanide (HCN). This study presents evidence that GacA positively influences the transcription of the rhlI gene, specifying C4-HSL synthase, explaining the quorum sensing-dependent transcriptional control of the HCN biosynthetic genes (hcnABC). In addition, GacA was found to modulate hcn gene expression positively at a post-transcriptional level involving the hcnA ribosome-binding site. Thus, the activating effect of GacA on cyanogenesis results from both transcriptional and post-transcriptional mechanisms.
Resumo:
Background: The cooperative interaction between transcription factors has a decisive role in the control of the fate of the eukaryotic cell. Computational approaches for characterizing cooperative transcription factors in yeast, however, are based on different rationales and provide a low overlap between their results. Because the wealth of information contained in protein interaction networks and regulatory networks has proven highly effective in elucidating functional relationships between proteins, we compared different sets of cooperative transcription factor pairs (predicted by four different computational methods) within the frame of those networks. Results: Our results show that the overlap between the sets of cooperative transcription factors predicted by the different methods is low yet significant. Cooperative transcription factors predicted by all methods are closer and more clustered in the protein interaction network than expected by chance. On the other hand, members of a cooperative transcription factor pair neither seemed to regulate each other nor shared similar regulatory inputs, although they do regulate similar groups of target genes. Conclusion: Despite the different definitions of transcriptional cooperativity and the different computational approaches used to characterize cooperativity between transcription factors, the analysis of their roles in the framework of the protein interaction network and the regulatory network indicates a common denominator for the predictions under study. The knowledge of the shared topological properties of cooperative transcription factor pairs in both networks can be useful not only for designing better prediction methods but also for better understanding the complexities of transcriptional control in eukaryotes.
Resumo:
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.
Resumo:
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Resumo:
The homeodomain protein PDX-1, referred as IPF-1/STF-1/IDX-1, is a transcriptional factor that plays a critical role in the control of several genes expressed in the pancreatic islet. PDX-1 gene expression has been previously shown to be reduced in cultured beta-cell lines chronically exposed to high glucose concentrations. As the glucose transporter type 2 (GLUT2) gene expression is selectively decreased in the beta-pancreatic cells of experimental models of diabetes, we postulated that the loss of GLUT2 gene expression in the pancreatic islets of diabetic animals may be due to the loss of PDX-1 transacting function on the GLUT2 gene. We, therefore, investigated the potential role of PDX-1 in the transcriptional control of GLUT2. We have identified a repeat of a TAAT motif (5'-TAATA-ATAACA-3') conserved in the sequence of the human and murine GLUT2 promoters. Recombinant PDX-1 binds to this GLUT2TAAT motif in electrophoretic mobility shift experiments. PDX-1 antiserum detects the formation of the complex of PDX-1 with the GLUT2TAAT motif in nuclear extracts from the pancreatic insulin-secreting cell line, beta TC3. The GLUT2TAAT motif was mutated in the murine GLUT2 promoter (-1308/+49 bp) linked to a luciferase reporter gene and transfected into beta TC3 cells. Compared with the transcriptional activity of the wild type promoter, that of the mutated promoter decreases by 41%. Multiple copies of the GLUT2TAAT motif were ligated 5' to a heterologous promoter and transfected into a PDX-1-expressing cell line (beta TC3) and into cell lines lacking the homeobox factor (InR1-G9 and JEG-3). The GLUT2TAAT motif mediates the activation of the heterologous promoter in the PDX-1-expressing cell line but not in InR1-G9 or JEG-3 cell lines. Furthermore, cotransfection in a PDX-1-deficient cell line with the expression vector encoding PDX-1 transactivates specifically the heterologous promoter containing the multimerized GLUT2TAAT motif. These data demonstrate that the murine GLUT2 promoter is controlled by the PDX-1 homeobox factor through the identified GLUT2TAAT motif.
Resumo:
Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ-dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer.
Resumo:
Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a member of the tumor necrosis factor receptor superfamily, is expressed in T lymphocytes, and exerts an anti-apoptotic function in these cells. We reported that GITR is also highly expressed in the skin, specifically in keratinocytes, and that it is under negative transcriptional control of p21(Cip1/WAF1), independently from the cell cycle. Although GITR expression is higher in p21-deficient keratinocytes and skin, it is down-modulated with differentiation and in response to UVB. The combined analysis of keratinocytes with increased GITR expression versus normal keratinocytes and skin of mice with a disruption of the GITR gene indicates that this protein protects keratinocytes from UVB-induced apoptosis both in vitro and in vivo.