977 resultados para TOTAL ARTIFICIAL-HEART
Resumo:
Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.
Resumo:
OBJECTIVE: To assess the impact of syncope during sustained ventricular tachycardia on total and cardiac mortality in patients with chronic chagasic heart disease. METHODS: We assessed 78 patients with sustained ventricular tachycardia and chronic Chagas' heart disease. The mean age was 53±10 years, 45 were males, and the mean ejection fraction was 49.6±13%. The patients were divided into 2 groups according to the presence (GI=45) or absence (GII=33) of syncope during sustained ventricular tachycardia. RESULTS: After a mean follow-up of 49 months, total mortality was 35% (28 deaths), 22 deaths having a cardiac cause (78.6%). No difference was observed in total (33.3% x 39.4%) and cardiac (26.7% x 30.3%) mortality, or in nonfatal sustained ventricular tachycardia between GI and GII patients (57.6% x 54.4%, respectively). However, the presence of syncope during recurrences was significantly greater in those patients who had had the symptom from the beginning (65.4% x 18.1%, p<0.01). CONCLUSION: Syncope during the presentation of sustained ventricular tachycardia is not associated with an increase in total or cardiac mortality in patients with chronic Chagas' heart disease. However, syncope during the recurrence ventricular tachycardia is greater in patients experiencing syncope in the first episode, of sustained ventricular tachycardia.
Resumo:
The Atripump is a motorless, volume displacement pump based on artificial muscle technology that could reproduce the pump function of normal atrium. It could help prevent blood clots due to blood stagnation and eventually avoid anticoagulation therapy in atrial fibrillation (AF). An animal study has been designed to assess mechanical effects of this pump on fibrillating atrium. The Atripump is a dome shaped silicone coated nitinol actuator. A pacemaker like control unit drives the actuator. In five adult sheep, the right atrium (RA) was exposed and dome sutured onto the epicardium. Atrial fibrillation was induced using rapid epicardial pacing (600 beats/min). Ejection fraction of the RA was obtained with intracardiac ultrasound in baseline, AF and Atripump assisted AF conditions. The dome's contraction rate was 60/min with power supply of 12V, 400 mA for 200 ms and ran for 2 hours in total. Mean temperature on the RA was 39+/-1.5 degrees C. Right atrium ejection fraction was 31% in baseline conditions, 5% and 20% in AF and assisted AF, respectively. In two animals a thrombus appeared in the right appendix and washed out once the pump was turned on. The Atripump washes blood out the RA acting as an anticoagulant device. Possible clinical implications in patients with chronic AF are prevention of embolism of cardiac origin and avoidance of hemorrhagic complication due to chronic anticoagulation.
Resumo:
Objectives: Existing VADs are single-ventricle pumps needing anticoagulation. We developed a bi-ventricular external assist device that partially reproduces the physiological muscle function of the heart. This artificial muscle could wrap the heart and improve its contractile force.Methods: The device has a carbon fiber skeleton fitting a 30-40kg patient's heart, to which a Nitinol based artificial muscle is connected. The artificial muscle wraps both ventricles. The Nitinol fibers are woven on a Kevlar mesh surrounding each ventricle. The fibers are electrically driven with a dedicated control unit developed for this purpose. We assessed hemodynamic performances of this device using a previously described dedicated bench test. Volume ejected and pressure gradient have been measured with afterload ranging from 10 to 50mmHg.Results: With an afterload of 50mmHg the system has an ejection fraction of 4% on the right side and 5% on the left side. The system is able to generate a systolic ejection of 2.2mL on the right side and 3.25mL on the left side. With an afterload of 25mmHg the results are reduced of about 20%. The activation frequency can reach 80/minute resulting in a total volume displacement of 176mL/minute on the right side and 260mL/minute on the left side.Conclusions: These preliminary studies confirmed the possibility of improving the ejection fraction of a failing heart using artificial muscle for external cardiac compression avoiding anticoagulation therapy. This device could be helpful in weaning cardio-pulmonary bypass and/or for short-term cardio-circulatory support in pediatric population with cardiac failure.
Resumo:
We describe a device made of artificial muscle for the treatment of end-stage heart failure as an alternative to current heart assist devices. The key component is a matrix of nitinol wires and aramidic fibers called Biometal muscle (BM). When heated electrically, it produces a motorless, smooth, and lifelike motion. The BM is connected to a carbon fiber scaffold, tightening the heart and providing simultaneous assistance to the left and right ventricles. A pacemaker-like microprocessor drives the contraction of the BM. We tested the device in a dedicated bench model of diseased heart. It generated a systolic pressure of 75 mm Hg and ejected a maximum of 330 ml/min, with an ejection fraction of 12%. The device required a power supply of 6 V, 250 mA. This could be the beginning of an era in which BMs integrate or replace the mechanical function of natural muscles.
Resumo:
Objective: Existing VADs are single-ventricle pumps needing anticoagulation. We developed a bi ventricular external assist device that reproduces the physiological heart muscle movement completely avoiding anticoagulants. Methods: The device has a carbon fibre skeleton fitting a 30-40 kg patient's heart, to which a Nitinol based artificial muscle is connected. The artificial muscle wraps both ventricles. The strength of the Nitinol fibres is amplified by a pivot articulation in contact with the ventricle wall. The fibres are electrically driven and a dedicated control unit has been developed. We assessed hemodynamic performances of this device using a previously described dedicated bench test. Volume ejected and pressure gradient has been measured with afterload ranging from 25 to 50mmHg. Results: With anafterload of 50mmHg the system has an ejection fraction (EF) of 10% on the right side and 8% on the left side. The system is able to generate a systolic ejection of 5,5 ml on the right side and 4,4 ml on the left side. With anafterload of 25mmHg the results are reduced of about 20%. The activation frequency is 80/minute resulting in a total volume displacement of 440 ml/minute on the right side and 352 ml/minute on the left side. Conclusions: The artificial muscle follows Starling's law as the ejected volume increases when afterload increases. These preliminary studies confirmed the possibility of improving the EF of a failing heart using artificial muscle for external cardiac compression. This device could be helpful in weaning CPB and/or for short-term cardio-circulatory support in paediatric population with cardiac failure.
Resumo:
Objective: In previous studies cholesterol-rich nanoemulsions (LDE) resembling low-density lipoprotein were shown to concentrate in atherosclerotic lesions of rabbits. Lesions were pronouncedly reduced by treatment with paclitaxel associated with LDE. This study aimed to test the hypothesis of whether LDE-paclitaxel is able to concentrate in grafted hearts of rabbits and to ameliorate coronary allograft vasculopathy after the transplantation procedure. Methods: Twenty-one New Zealand rabbits fed 0.5% cholesterol were submitted to heterotopic heart transplantation at the cervical position. All rabbits undergoing transplantation were treated with cyclosporin A (10 mg . kg(-1) . d(-1) by mouth). Eleven rabbits were treated with LDE-paclitaxel (4 mg/kg body weight paclitaxel per week administered intravenously for 6 weeks), and 10 control rabbits were treated with 3 mL/wk intravenous saline. Four control animals were injected with LDE labeled with [(14)C]-cholesteryl oleate ether to determine tissue uptake. Results: Radioactive LDE uptake by grafts was 4-fold that of native hearts. In both groups the coronary arteries of native hearts showed no stenosis, but treatment with LDE-paclitaxel reduced the degree of stenosis in grafted hearts by 50%. The arterial luminal area in grafts of the treated group was 3-fold larger than in control animals. LDE-paclitaxel treatment resulted in a 7-fold reduction of macrophage infiltration. In grafted hearts LDE-paclitaxel treatment reduced the width of the intimal layer and inhibited the destruction of the medial layer. No toxicity was observed in rabbits receiving LDE-paclitaxel treatment. Conclusions: LDE-paclitaxel improved posttransplantation injury to the grafted heart. The novel therapeutic approach for heart transplantation management validated here is thus a promising strategy to be explored in future clinical studies. (J Thorac Cardiovasc Surg 2011;141:1522-8)
Resumo:
O trabalho foi desenvolvido na U.P.A. “Senador Álvaro Adolpho”, Embrapa Amazônia Oriental, Belém, Pará (1º25¢ S 48º26¢ O), local de tipo climático Afi (quente e úmido). O objetivo foi avaliar o uso de sistemas silvipastoris (SSP) como ferramenta de manejo para proporcionar maior conforto térmico a búfalas leiteiras, e incrementar sua eficiência reprodutiva após a utilização da inseminação artificial em tempo fixo. Foram utilizados dois SSP´s, durante dois períodos do ano, onde: Período 1 (Abril a Junho), com maior precipitação pluviométrica e Período 2 (Setembro a Novembro), com menor precipitação pluviométrica. Foram mensuradas a freqüência cardíaca (FC), freqüência respiratória (FR), temperatura retal (TR) e movimentos ruminais (MR), sempre às 9h00min. O índice de conforto animal foi calculado conforme a fórmula: ICA = TR/38,33 + FR/23. Os animais de cada sistema foram tratados com dois diferentes protocolos para sincronização do estro e ovulação, formando os Grupos SSP 1/Ovsynch, SSP 2/Ovsynch (estro sincronizado com Ovsynch), SSP 1/Prog e SSP 2/Prog (estro sincronizado com Ovsynch + 1g de progesterona intravaginal). Os ovários de todas as búfalas foram monitorados por ultra-sonografia no D0, D7 e D9 e as búfalas foram inseminadas no D10 (D0=dia do início da sincronização). As médias de FC foram de 57,35±8,24 bat/min no Período 1 e 62,48 ±7,79 bat/min no Período 2 (P<0,01). A FR média foi de 25,66 ±10,53 mov/min no Período 1 e de 33,38 ±18,23 mov/min no Período 2 (P<0,01). Os animais mantidos no SSP 1 apresentaram TR superior aos do SSP 2 (39,02 ±0,53ºC versus 38,65 ±0,41ºC, P<0,01). As médias do ICA variaram entre 1,89 e 3,55. No Período 1 obteve-se variação de 1,89 a 2,42 e média de 2,12 ±0,46. No Período 2, a média do ICA foi de 2,46 ±0,79, com variação de 1,91 a 3,55. Houve diferença significativa das médias de ICA entre os períodos (P<0,01). O diâmetro do folículo dominante no D9 foi superior para os animais que receberam progesterona (10,40 ±1,22 mm versus 12,21 ±3,42 mm; P=0,05). A taxa de prenhez total foi de 48,21%, sendo que no Período 1 houve 56,66% de fêmeas gestantes, contra 38,46% no Período 2 (SSP1/Ovsynch: 40,0%; SSP2/Ovsynch: 38,46%; SSP1/Prog: 46,66% e SSP2/Prog: 69,23%; P>0,05). Com base nos resultados, ressalta-se a importância do manejo do ambiente físico para a criação de bubalinos na Amazônia Oriental, o que pode evitar gastos energéticos para a termorregulação animal e possibilitar melhores índices reprodutivos.
Resumo:
To assess safety and efficacy of tailored total lymphoid irradiation (tTLI) in cardiac transplant patients.
Resumo:
Extracorporeal membrane oxygenation (ECMO) was used to achieve temporary artificial support in cardiac and pulmonary function in 22 patients from 1987 to September 1990. Standard indications were postcardiotomy cardiogenic shock (n = 4), neonatal (n = 1) and adult respiratory distress syndrome (n = 4). ECMO was also used for extended indications, such as graft failure following heart (n = 11) or lung transplantation (n = 2). In six of these cases ECMO was instituted as a bridge device to subsequent retransplantation of either the heart (n = 4) or one lung (n = 2). One out of nine patients supported by ECMO for standard indications, and two out of 13 patients supported for extended indications are long-term survivors. This series illustrates the results with ECMO in emergency situations, in patients under immunosuppressive protocols, or in patients with advanced lung failure requiring almost complete artificial gas exchange. In such complex situations, ECMO does provide stabilization until additional therapeutic measures are in effect. ECMO cannot be recommended for postoperative cardiogenic shock but short-term ECMO support is an accepted method in most cases with graft failure or pulmonary failure or other origin.
Resumo:
This work explores the automatic recognition of physical activity intensity patterns from multi-axial accelerometry and heart rate signals. Data collection was carried out in free-living conditions and in three controlled gymnasium circuits, for a total amount of 179.80 h of data divided into: sedentary situations (65.5%), light-to-moderate activity (17.6%) and vigorous exercise (16.9%). The proposed machine learning algorithms comprise the following steps: time-domain feature definition, standardization and PCA projection, unsupervised clustering (by k-means and GMM) and a HMM to account for long-term temporal trends. Performance was evaluated by 30 runs of a 10-fold cross-validation. Both k-means and GMM-based approaches yielded high overall accuracy (86.97% and 85.03%, respectively) and, given the imbalance of the dataset, meritorious F-measures (up to 77.88%) for non-sedentary cases. Classification errors tended to be concentrated around transients, what constrains their practical impact. Hence, we consider our proposal to be suitable for 24 h-based monitoring of physical activity in ambulatory scenarios and a first step towards intensity-specific energy expenditure estimators
Resumo:
La diabetes comprende un conjunto de enfermedades metabólicas que se caracterizan por concentraciones de glucosa en sangre anormalmente altas. En el caso de la diabetes tipo 1 (T1D, por sus siglas en inglés), esta situación es debida a una ausencia total de secreción endógena de insulina, lo que impide a la mayoría de tejidos usar la glucosa. En tales circunstancias, se hace necesario el suministro exógeno de insulina para preservar la vida del paciente; no obstante, siempre con la precaución de evitar caídas agudas de la glucemia por debajo de los niveles recomendados de seguridad. Además de la administración de insulina, las ingestas y la actividad física son factores fundamentales que influyen en la homeostasis de la glucosa. En consecuencia, una gestión apropiada de la T1D debería incorporar estos dos fenómenos fisiológicos, en base a una identificación y un modelado apropiado de los mismos y de sus sorrespondientes efectos en el balance glucosa-insulina. En particular, los sistemas de páncreas artificial –ideados para llevar a cabo un control automático de los niveles de glucemia del paciente– podrían beneficiarse de la integración de esta clase de información. La primera parte de esta tesis doctoral cubre la caracterización del efecto agudo de la actividad física en los perfiles de glucosa. Con este objetivo se ha llevado a cabo una revisión sistemática de la literatura y meta-análisis que determinen las respuestas ante varias modalidades de ejercicio para pacientes con T1D, abordando esta caracterización mediante unas magnitudes que cuantifican las tasas de cambio en la glucemia a lo largo del tiempo. Por otro lado, una identificación fiable de los periodos con actividad física es un requisito imprescindible para poder proveer de esa información a los sistemas de páncreas artificial en condiciones libres y ambulatorias. Por esta razón, la segunda parte de esta tesis está enfocada a la propuesta y evaluación de un sistema automático diseñado para reconocer periodos de actividad física, clasificando su nivel de intensidad (ligera, moderada o vigorosa); así como, en el caso de periodos vigorosos, identificando también la modalidad de ejercicio (aeróbica, mixta o de fuerza). En este sentido, ambos aspectos tienen una influencia específica en el mecanismo metabólico que suministra la energía para llevar a cabo el ejercicio y, por tanto, en las respuestas glucémicas en T1D. En este trabajo se aplican varias combinaciones de técnicas de aprendizaje máquina y reconocimiento de patrones sobre la fusión multimodal de señales de acelerometría y ritmo cardíaco, las cuales describen tanto aspectos mecánicos del movimiento como la respuesta fisiológica del sistema cardiovascular ante el ejercicio. Después del reconocimiento de patrones se incorpora también un módulo de filtrado temporal para sacar partido a la considerable coherencia temporal presente en los datos, una redundancia que se origina en el hecho de que en la práctica, las tendencias en cuanto a actividad física suelen mantenerse estables a lo largo de cierto tiempo, sin fluctuaciones rápidas y repetitivas. El tercer bloque de esta tesis doctoral aborda el tema de las ingestas en el ámbito de la T1D. En concreto, se propone una serie de modelos compartimentales y se evalúan éstos en función de su capacidad para describir matemáticamente el efecto remoto de las concetraciones plasmáticas de insulina exógena sobre las tasas de eleiminación de la glucosa atribuible a la ingesta; un aspecto hasta ahora no incorporado en los principales modelos de paciente para T1D existentes en la literatura. Los datos aquí utilizados se obtuvieron gracias a un experimento realizado por el Institute of Metabolic Science (Universidad de Cambridge, Reino Unido) con 16 pacientes jóvenes. En el experimento, de tipo ‘clamp’ con objetivo variable, se replicaron los perfiles individuales de glucosa, según lo observado durante una visita preliminar tras la ingesta de una cena con o bien alta carga glucémica, o bien baja. Los seis modelos mecanísticos evaluados constaban de: a) submodelos de doble compartimento para las masas de trazadores de glucosa, b) un submodelo de único compartimento para reflejar el efecto remoto de la insulina, c) dos tipos de activación de este mismo efecto remoto (bien lineal, bien con un punto de corte), y d) diversas condiciones iniciales. ABSTRACT Diabetes encompasses a series of metabolic diseases characterized by abnormally high blood glucose concentrations. In the case of type 1 diabetes (T1D), this situation is caused by a total absence of endogenous insulin secretion, which impedes the use of glucose by most tissues. In these circumstances, exogenous insulin supplies are necessary to maintain patient’s life; although caution is always needed to avoid acute decays in glycaemia below safe levels. In addition to insulin administrations, meal intakes and physical activity are fundamental factors influencing glucose homoeostasis. Consequently, a successful management of T1D should incorporate these two physiological phenomena, based on an appropriate identification and modelling of these events and their corresponding effect on the glucose-insulin balance. In particular, artificial pancreas systems –designed to perform an automated control of patient’s glycaemia levels– may benefit from the integration of this type of information. The first part of this PhD thesis covers the characterization of the acute effect of physical activity on glucose profiles. With this aim, a systematic review of literature and metaanalyses are conduced to determine responses to various exercise modalities in patients with T1D, assessed via rates-of-change magnitudes to quantify temporal variations in glycaemia. On the other hand, a reliable identification of physical activity periods is an essential prerequisite to feed artificial pancreas systems with information concerning exercise in ambulatory, free-living conditions. For this reason, the second part of this thesis focuses on the proposal and evaluation of an automatic system devised to recognize physical activity, classifying its intensity level (light, moderate or vigorous) and for vigorous periods, identifying also its exercise modality (aerobic, mixed or resistance); since both aspects have a distinctive influence on the predominant metabolic pathway involved in fuelling exercise, and therefore, in the glycaemic responses in T1D. Various combinations of machine learning and pattern recognition techniques are applied on the fusion of multi-modal signal sources, namely: accelerometry and heart rate measurements, which describe both mechanical aspects of movement and the physiological response of the cardiovascular system to exercise. An additional temporal filtering module is incorporated after recognition in order to exploit the considerable temporal coherence (i.e. redundancy) present in data, which stems from the fact that in practice, physical activity trends are often maintained stable along time, instead of fluctuating rapid and repeatedly. The third block of this PhD thesis addresses meal intakes in the context of T1D. In particular, a number of compartmental models are proposed and compared in terms of their ability to describe mathematically the remote effect of exogenous plasma insulin concentrations on the disposal rates of meal-attributable glucose, an aspect which had not yet been incorporated to the prevailing T1D patient models in literature. Data were acquired in an experiment conduced at the Institute of Metabolic Science (University of Cambridge, UK) on 16 young patients. A variable-target glucose clamp replicated their individual glucose profiles, observed during a preliminary visit after ingesting either a high glycaemic-load or a low glycaemic-load evening meal. The six mechanistic models under evaluation here comprised: a) two-compartmental submodels for glucose tracer masses, b) a single-compartmental submodel for insulin’s remote effect, c) two types of activations for this remote effect (either linear or with a ‘cut-off’ point), and d) diverse forms of initial conditions.