992 resultados para TORSION MECHANICAL
Resumo:
The evolution of microstructure and texture in Hexagonal Close Pack commercially pure titanium has been studied in torsion in a strain rate regime of 0.001 to 1 s(-1). Free end torsion tests carried out on titanium rods indicated higher stress levels at higher strain rate but negligible change in the strain-hardening behaviour. There was a decrease in the intra-granular misorientation while a negligible change in the amount of contraction and extension twins was observed with increase in strain rate. The deformed samples showed a C-1 fibre (c-axis is first rotated 90 degrees in shear direction and then +30 degrees in shear plane direction) at all the strain rates. With the increase in strain rate, there was an increase in the intensity of the C-1 fibre and it became more heterogeneous with a strong {11(2)over-bar6}< 2(8)over-bar)63 > component. In the absence of extensive twinning, pyramidal < c+a > slip system is attributed for the observed deformation texture. The present investigation, therefore, substantiates the theoretical prediction of increase in strength of texture with strain rate in torsion.
Resumo:
In this work, we present a finite element formulation for the Saint-Venant torsion and bending problems for prismatic beams. The torsion problem formulation is based on the warping function, and can handle multiply-connected regions (including thin-walled structures), compound and anisotropic bars. Similarly, the bending formulation, which is based on linearized elasticity theory, can handle multiply-connected domains including thin-walled sections. The torsional rigidity and shear centers can be found as special cases of these formulations. Numerical results are presented to show the good coarse-mesh accuracy of both the formulations for both the displacement and stress fields. The stiffness matrices and load vectors (which are similar to those for a variable body force in a conventional structural mechanics problem) in both formulations involve only domain integrals, which makes them simple to implement and computationally efficient. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A comprehensive experimental study has been made on angular sand to investigate various aspects of mechanical behavior. A hollow cylinder torsion testing apparatus is used in this program to apply a range of stress conditions on this angular quartzitic fine sand under monotonic drained shear. The effect of the magnitude and inclination of the principal stresses on an element of sand is studied through these experiments. This magnitude and inclination of the principal stresses are presented as an ``ensemble measure of fabric in sands''. This ensemble measure of fabric in the sands evolves through the shearing process, and reaches the final state, which indeed has a unique fabric. The sand shows significant variation in strength with changing inclination of the principal stresses. The locus of the final stress state in principal stress space is also mapped from these series of experiments. Additional aspects of non-coaxiality, a benchmarking exercise with a few constitutive models is presented here. This experimental approach albeit indirect shows that a unique state which is dependent on the fabric, density and confining stress exists. This suite of experiments provides a well-controlled data set for a clear understanding on the mechanical behavior of sands.
Resumo:
Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformationinduced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of Fe in the surface solid solutions: from hexagonal close-packed (<4% Fe) to face-centered cubic (fcc) (4-11% Fe), and from fcc to body-centered cubic (>11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrystalline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The scientific and technological development in the area of new materials contributed to several applications of niobium and its alloys in nuclear power plants as well as in aerospace, aeronautics, automobile and naval industries. This paper presents the interstitial diffusion coefficients of nitrogen in solid solution in the Nb-1.0wt%Zr alloy using internal friction measurements obtained by mechanical spectroscopy, which uses a torsion pendulum operating at an oscillation frequency between 1.0 Hz and 10.0 Hz. The temperature range varies from 300K to 700K, at a heating rate of 1 K/min and vacuum better than 2 x 10(-6) Torr. The results showed an increase of the interstitial diffusion coefficient of nitrogen that was correlated with configurational considerations for the octahedral interstitials.
Resumo:
The mechanical properties of metals with a body-centered cubic (bcc) structure, such as Nb, Ta, V, and their alloys, are modified with the introduction of interstitial impurities, such as O, N, C, or H. These metals can dissolve great amounts of O and N, for example, to form solid solutions. The interstitial solute atoms (ISA) in metals with a bcc structure occupy octahedral sites and cause local distortion with tetragonal symmetry. So ISA in these metals forms an elastic dipole that can align along one of the three cubic axis of the crystal. In the present paper, the torsion pendulum technique was employed for the investigation of various interactions among the metallic matrix and different interstitial solutes in the Nb-46wt%Ti alloy. From the relaxation spectra, we obtained the diffusion coefficients, pre-exponential factors, and activation energies for nitrogen in the Nb-46wt%Ti alloy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ti-6Al-7Nb alloys are being evaluated for biomedical applications, in substitution of the more conventional Ti-6Al-7V. Both types of alloys present a microstructure containing the alpha and the beta phases, which result in good compromise for mechanical applications. In the present work Ti-6Al-7Nb alloys were processed by High Pressure Torsion (HPT), varying the number of revolutions and thus the total imposed strain. X-Ray Diffraction (XRD) results revealed the formation of different crystallographic textures in samples subjected to HPT. Microhardness distribution, across the diameters of the disks, is rather homogeneous for all samples, with higher values for those subjected to 03 and 05 turns. Transmission electron microscopy (TEM) micrographs have showed that an ultra-fine grained microstructure was obtained in all the samples.
Resumo:
Interstitial solutes in body-centered cubic metals, such as oxygen in tantalum, produce ideally Snoek effects when they are in solutions enough diluted. However, for higher concentration of these solutes, more complex relaxation process can occur, as interaction between interstitial solutes and dislocations. Anelastic relaxation measurements were carried out in polycrystalline tantalum samples, using torsion pendulum inverted, operating between 300 K and 680 K and oscillation frequencies in the hertz bandwidth, for three different experimental sample conditions: as received sample, annealed and annealed followed by a treatment in an oxygen atmosphere. These measurements have revealed the following behavior: the intensity of the internal friction peak associated to matrix-interstitial interaction Ta-O decreased between the first run and the next runs, and this phenomenon did not occur for the others conditions. The variation of relaxation strength of Ta-O peak, with number of runs is due to a decrease of an amount of oxygen in solid solution, which can be associated with the precipitation of new phases in Ta sample and with the trapping of oxygen atoms by dislocations.
Resumo:
The short-range diffusion phenomenon (Snoek Effect) was investigated by mechanical spectroscopy measurements between 300 K and 650 K, in a polycrystalline niobium sample, containing oxygen and nitrogen, using a torsion pendulum. Experimental spectra of anelastic relaxation were obtained under three conditions: as-received sample; annealed sample and subsequently annealed in an oxygen atmosphere for three hours at 1170 K in partial pressure of 5°10 -5mbar. The experimental spectra obtained were decomposed in elementary Debye peaks and the anelastic relaxation processes were identified. With anelastic relaxation parameters and the lattice parameters, the interstitial diffusion coefficients of the oxygen and nitrogen in niobium were calculated for each kind of preferential occupation (octahedral and tetrahedral). The results were compared with the literature data, and confirmed that the best adjustment is for the preferential occupation octahedral model for low concentrations of interstitial solutes, but at higher concentration of oxygen were observed deviations of experimental data for the interstitial diffusion coefficients of oxygen in niobium when compared with the literature data, this could be related to the possible occurrence of a double occupation of interstitial sites in the niobium lattice by oxygen interstitials. © (2010) Trans Tech Publications.
Resumo:
Many researchers became interested in the discovery of Bi(2)Sr(2)CaCu(2)O(8+delta) oxides with critical temperature of around 80 K. It is known that the critical temperature is related to the CuO2 planes of the material. For this reason, the study of the interstitial oxygen in these oxides is of great relevance. The samples were prepared by means of conventional solid state reactions, through the stoichiometric mixture of precursory powders. After the sinterization, the samples were submitted to measurements of density, electrical resistivity, x-ray diffraction, scanning electron microscopy and energy dispersion spectroscopy, with the objective of performing their characterization. The measurements of mechanical spectroscopy were performed by a torsion pendulum. The results show three relaxation processes in the temperature range of 200 and 700 K, with activation energy of approximately 0.9 eV, which has been attributed to the dynamics of the interstitial oxygen present in the material.
Resumo:
While beneficially decreasing the necessary incision size, arthroscopic hip surgery increases the surgical complexity due to loss of joint visibility. To ease such difficulty, a computer-aided mechanical navigation system was developed to present the location of the surgical tool relative to the patient¿s hip joint. A preliminary study reduced the position error of the tracking linkage with limited static testing trials. In this study, a correction method, including a rotational correction factor and a length correction function, was developed through more in-depth static testing. The developed correction method was then applied to additional static and dynamic testing trials to evaluate its effectiveness. For static testing, the position error decreased from an average of 0.384 inches to 0.153 inches, with an error reduction of 60.5%. Three parameters utilized to quantify error reduction of dynamic testing did not show consistent results. The vertex coordinates achieved 29.4% of error reduction, yet with large variation in the upper vertex. The triangular area error was reduced by 5.37%, however inconsistent among all five dynamic trials. Error of vertex angles increased, indicating a shape torsion using the developed correction method. While the established correction method effectively and consistently reduced position error in static testing, it did not present consistent results in dynamic trials. More dynamic paramters should be explored to quantify error reduction of dynamic testing, and more in-depth dynamic testing methodology should be conducted to further improve the accuracy of the computer-aided nagivation system.