1000 resultados para TNBS rat colitis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IBD is a gastro-intestinal disorder marked with chronic inflammation of intestinal epithelium, damaging mucosal tissue and manifests into several intestinal and extra-intestinal symptoms. Currently used medical therapy is able to induce and maintain the patient in remission, however no modifies or reverses the underlying pathogenic mechanism. The research of other medical approaches is crucial to the treatment of IBD and, for this, it´s important to use animal models to mimic the characteristics of disease in real life. The aim of the study is to develop an animal model of TNBS-induced colitis to test new pharmacological approaches. TNBS was instilled intracolonic single dose as described by Morris et al. It was administered 2,5% TNBS in 50% ethanol through a catheter carefully inserted into the colon. Mice were kept in a Tredelenburg position to avoid reflux. On day 4 and 7, the animals were sacrificed by cervical dislocation. The induction was confirmed based on clinical symptoms/signs, ALP determination and histopathological analysis. At day 4, TNBS group presented a decreased body weight and an alteration of intestinal motility characterized by diarrhea, severe edema of the anus and moderate morbidity, while in the two control groups weren’t identified any alteration on the clinical symptoms/signs with an increase of the body weight. TNBS group presented the highest concentrations of ALP comparing with control groups. The histopathology analysis revealed severe necrosis of the mucosa with widespread necrosis of the intestinal glands. Severe hemorrhagic and purulent exsudates were observed in the submucosa, muscular and serosa. TNBS group presented clinical symptoms/signs and histopathological features compatible with a correct induction of UC. The peak of manifestations became maximal at day 4 after induction. This study allows concluding that it’s possible to develop a TNBS induced colitis 4 days after instillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory bowel disease (IBD) is a multifactorial intestinal disorder that involves interactions among the immune system, genetic susceptibility, and environmental factors, especially the bacterial flora. Polydextrose, a polysaccharide constituted by 90% nondigestible and nonabsorbable soluble fibers, has several physiological effects consistent with those of dietary fibers, including proliferation of colon microflora. Because sulfasalazine presents serious side effects through long-term use at high doses, the aim of the present study was to evaluate the preventative effect of polydextrose on trinitrobenzenesulfonic acid-induced intestinal inflammation and its effects on the intestinal anti-inflammatory activity of sulfasalazine. Results indicated that polydextrose and its association with sulfasalazine present an anti-inflammatory effect that reduces myeloperoxidase activity, counteracts glutathione content, and promotes reductions in lesion extension and colonic weight/length ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that complement factor 5a(C5a) plays a role in the pathogenesis of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats by using the selective, orally active C5a antagonist AcF-[OP(D-Cha) WR]. This study tested the efficacy and potency of a new C5a antagonist, hydrocinnamate (HC)-[OP(D-Cha) WR], which has limited intestinal lumenal metabolism, in this model of colitis. Analogs of AcF-[OP(D-Cha) WR] were examined for their susceptibility to alimentary metabolism in the rat using intestinal mucosal washings. One metabolically stable analog, HC-[OP(D-Cha)WR], was then evaluated pharmacokinetically and investigated at a range of doses (0.03 - 10 mg/kg/ day p.o.) in the 8-day rat TNBS- colitis model, against the comparator drug AcF-[OP(D-Cha) WR]. Using various amino acid substitutions, it was determined that the AcF moiety of AcF-[OP(D-Cha) WR] was responsible for the metabolic instability of the compound in intestinal mucosal washings. The analog HC-[OP( D-Cha) WR], equiactive in vitro to AcF-[OP(D-Cha) WR], was resistant to intestinal metabolism, but it displayed similar oral bioavailability to AcF-[OP(D-Cha) WR]. However, in the rat TNBS- colitis model, HC-[OP(D-Cha) WR] was effective at reducing mortality, colon edema, colon macroscopic scores, and increasing food consumption and body weights, at 10- to 30- fold lower oral doses than AcF-[OP( D-Cha) WR]. These studies suggest that resistance to intestinal metabolism by HC-[OP(D-Cha) WR] may result in increased local concentrations of the drug in the colon, thus affording efficacy with markedly lower oral doses than AcF-[OP(D-Cha) WR] against TNBS-colitis. This large increase in potency and high efficacy of this compound makes it a potential candidate for clinical development against intestinal diseases such as inflammatory bowel disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hev b 13 is an allergenic esterase obtained from the rubber tree Hevea brasiliensis, which has been shown recently to induce human mononuclear cells to release interleukin (IL)-10 in vitro. This immunoregulatory cytokine appears to play an important role in preventing inflammation and mucosal damage in animal models of colitis and in Crohn's disease patients. The aim of this study was to evaluate the therapeutic effect of Hev b 13 in mice with 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis. Two hours following colonic instillation of the haptenizing agent, and daily thereafter for 5 days, Hev b 13 was administered by oral gavage. In mice treated with daily doses of either 0.5 mg/kg or 5.0 mg/kg of Hev b 13, the clinical signs of diarrhoea, rectal prolapse and body weight loss and also histological damage of the distal colon, were reduced significantly, in comparison with water-treated diseased mice. These findings suggest a potent anti-inflammatory activity of Hev b 13; this activity is speculated to be related to its interaction with cells from the immune system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor gamma (PPARgamma) is highly expressed in the colon mucosa and its activation has been reported to protect against colitis. We studied the involvement of PPARgamma and its heterodimeric partner, the retinoid X receptor (RXR) in intestinal inflammatory responses. PPARgamma(1/)- and RXRalpha(1/)- mice both displayed a significantly enhanced susceptibility to 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis compared with their wild-type littermates. A role for the RXR/PPARgamma heterodimer in the protection against colon inflammation was explored by the use of selective RXR and PPARgamma agonists. TNBS-induced colitis was significantly reduced by the administration of both PPARgamma and RXR agonists. This beneficial effect was reflected by increased survival rates, an improvement of macroscopic and histologic scores, a decrease in tumor necrosis factor alpha and interleukin 1beta mRNA levels, a diminished myeloperoxidase concentration, and reduction of nuclear factor kappaB DNA binding activity, c-Jun NH(2)-terminal kinase, and p38 activities in the colon. When coadministered, a significant synergistic effect of PPARgamma and RXR ligands was observed. In combination, these data demonstrate that activation of the RXR/PPARgamma heterodimer protects against colon inflammation and suggest that combination therapy with both RXR and PPARgamma ligands might hold promise in the clinic due to their synergistic effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NOD2 functions as an intracellular sensor for microbial pathogen and plays an important role in epithelial defense. The loss-of-function mutation of NOD2 is strongly associated with human Crohn's disease (CD). However, the mechanisms of how NOD2 maintains the intestinal homeostasis and regulates the susceptibility of CD are still unclear. Here we found that the numbers of intestinal intraepithelial lymphocytes (IELs) were reduced significantly in Nod2(-/-) mice and the residual IELs displayed reduced proliferation and increased apoptosis. Further study showed that NOD2 signaling maintained IELs via recognition of gut microbiota and IL-15 production. Notably, recovery of IELs by adoptive transfer could reduce the susceptibility of Nod2(-/-) mice to the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Our results demonstrate that recognition of gut microbiota by NOD2 is important to maintain the homeostasis of IELs and provide a clue that may link NOD2 variation to the impaired innate immunity and higher susceptibility in CD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hev b 13 is an allergenic esterase obtained from the rubber tree Hevea brasiliensis, which has been shown recently to induce human monocytes to release interleukin (IL)-10 in vitro, and to exert a potent anti-inflammatory effect in vivo. Moreover, Hev b 13 has been shown to reduce clinical signs of inflammation and also histological damage to the distal colon of mice with 2,4,6-trinitrobenze sulphonic acid (TNBS)-induced colitis after its oral administration. The aim of this study was to investigate the effect of Hev b 13 on human mononuclear cells, as well as its therapeutic use in the methylated bovine serum albumin (mBSA) model of antigen-induced arthritis. Five days before the intra-articular challenge, and daily thereafter for 8 days, Hev b 13 was administered by oral gavage. In mice treated with a dose of 0.5 mg/kg of Hev b 13, the severity of oedema, leucocyte infiltration, pannus formation and cartilage erosion were reduced significantly. These findings underscore the anti-inflammatory activity suggested previously for Hev b 13, an activity speculated to be related to its interaction with monocytes/macrophages and the consequent stimulation of IL-10 release and reduction of tumour necrosis factor (TNF) release. The study also opens a wide range of possible applications in the field of immune-mediated inflammatory diseases.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ethnopharmacological relevance: In Brazilian traditional medicine, Arctium lappa (Asteraceae), has been reported to relieve gastrointestinal symptoms. Aim of the study: In the present study, we investigated the effects of the lactone sesquiterpene onopordopicrin enriched fraction (ONP fraction) from Arctium lappa in an experimental colitis model induced by 2,4,6 trinitrobenzene sulfonic acid and performed experiments to elucidate the underlying action mechanisms involved in that effect. Materials and methods: ONP fraction (25 and 50 mg/kg/day) was orally administered 48, 24 and 1 h prior to the induction of colitis and 24 h after. The inflammatory response was assessed by gross appearance, myeloperoxidase (MPO) activity, tumor necrosis factor alpha (TNF-α) levels and a histological study of the lesions. We determined cyclooxygenase (COX)-1 and -2 protein expressions by western blotting and immunohistochemistry assays. Results: TNBS group was characterized by increased colonic wall thickness, edema, diffuse inflammatory cell infiltration, increased MPO activity and TNF-α levels. On the contrary, ONP fraction (25 and 50 mg/kg) treatment significantly reduced the macroscopic inflammation scores (p<0.05 and p<0.01, respectively) and morphological alterations associated with an increase in the mucus secretion. Similarly, the degree of neutrophil infiltration and the cytokine levels were significantly ameliorated. Moreover, COX-2 expression was up regulated in TNBS-treated rats. In contrast, ONP fraction (50 mg/kg) administration reduced COX-2 overexpression. Conclusions: We have shown that the ONP fraction obtained from Arctium lappa exert marked protective effects in acute experimental colitis, confirming and justifying, at least in part, the popular use of this plant to treat gastrointestinal diseases. © 2013 Elsevier B.V. All rights reserved.