972 resultados para TISSUE GROWTH-FACTOR
Resumo:
Our objective was to determine the presence of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and MMP-9 and specific tissue inhibitors of matrix metalloproteinase (TIMP-1 and TIMP-2) in tumor samples obtained from patients with primary breast cancer. We attempted to correlate these findings with the status of the sentinel lymph node (SLN) and clinical-pathological characteristics such as age, tumor size, histological type, histological grade, and vascular invasion. Tumor samples from 88 patients with primary breast cancer were analyzed. The immunoreactivity of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 in tumors was correlated with clinical and pathological features, as well as SLN status. Nonparametric, Mann-Whittney, Kruskal-Wallis, and Spearmann tests were used. Categorical variables were analyzed by the Pearson test. No statistically significant correlation was found between the amount of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 and the presence of tumor cells in the SLN. However, larger tumor diameter (P < 0.01) and the presence of vascular invasion (P < 0.01) were correlated positively with a positive SLN. A significant correlation of higher VEGF levels (P = 0.04) and lower TIMP-1 levels (P = 0.04) with ductal histology was also observed. Furthermore, lower TIMP-2 levels showed a statistically significant correlation with younger age (<50 years) and larger tumor diameter (2.0-5.0 cm). A positive SLN correlated significantly with a larger tumor diameter and the presence of vascular invasion. Higher VEGF and lower TIMP-1 levels were observed in patients with ductal tumors, while higher TIMP-1 levels were observed in lobular tumors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The course of leprosy depends of the host immune response which ranges from the lepromatous pole (LL) to the tuberculoid pole (TT). A comparative study was conducted in 60 patients with the LL and TT The results showed a mean expression of TGF-beta of 339 +/- 99.4 cells/field for TT and of 519.2 +/- 68.2 cells/field for LL. Frequency of apoptosis was 6.3 +/- 1.8 in TT and 14.0 +/- 6.1 in LL. A correlation (p = 0.0251) between TGF-beta and caspase-3 in the LL was found. This finding indicates a role of TGF-beta and apoptosis in the immune response in leprosy. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Background. Transforming growth factor alpha (TGF alpha) is an important mitogen that binds to epidermal growth factor receptor and is associated with the development of several tumors. Aims. Assessment of the immunoexpression of TGF alpha in hepatocellular carcinoma (HCC) and in non-neoplastic liver tissue and its relationship to morphological patterns of HCC. Material and methods. The immunohistochemical expression of TGF alpha was studied in 47 cases of HCC (27 multinodular, 20 nodular lesions). Five lesions measured up to 5 cm and 15 lesions above 5 cm. Thirty-two cases were graded as I or II and 15 as III or IV. The non-neoplastic tissue was examined in 40 cases, of which 22 had cirrhosis. HBsAg and anti-HCV were positive in 5/38 and 15/37 patients, respectively. The statistical analysis for possible association of immunostaining of TGF alpha and pathological features was performed through chi-square test. Results. TGF alpha was detected in 31.9% of the HCC and in 42.5% of the non-neoplastic. There was a statistically significant association between the expression of TGF alpha and cirrhosis (OR = 8.75, 95% CI = [1.93, 39.75]). The TGF alpha was detected more frequently in patients anti-HCV(+) than in those HBsAg(+). The immunoexpression of TGF alpha was not found related to tumor size or differentiation. In conclusion the TGF alpha is present in hepatocarcinogenesis in HBV negative patients. Further analysis is needed to examine the involvement of TGF alpha in the carcinogenesis associated with HCV and other possible agents. In addition, TGF alpha has an higher expression in hepatocyte regeneration and proliferation in cirrhotic livers than in HCC.
Resumo:
Mesenchymal stromal cells (MSCs), which reside within various tissues, are utilized in the engineering of cartilage tissue. Dexamethasone (DEX)--a synthetic glucocorticoid--is almost invariably applied to potentiate the growth-factor-induced chondrogenesis of MSCs in vitro, albeit that this effect has been experimentally demonstrated only for transforming-growth-factor-beta (TGF-β)-stimulated bone-marrow-derived MSCs. Clinically, systemic glucocorticoid therapy is associated with untoward side effects (e.g., bone loss and increased susceptibility to infection). Hence, the use of these agents should be avoided or limited. We hypothesize that the influence of DEX on the chondrogenesis of MSCs depends upon their tissue origin and microenvironment [absence or presence of an extracellular matrix (ECM)], as well as upon the nature of the growth factor. We investigated its effects upon the TGF-β1- and bone-morphogenetic-protein 2 (BMP-2)-induced chondrogenesis of MSCs as a function of tissue source (bone marrow vs. synovium) and microenvironment [cell aggregates (no ECM) vs. explants (presence of a natural ECM)]. In aggregates of bone-marrow-derived MSCs, DEX enhanced TGF-β1-induced chondrogenesis by an up-regulation of cartilaginous genes, but had little influence on the BMP-2-induced response. In aggregates of synovial MSCs, DEX exerted no remarkable effect on either TGF-β1- or BMP-2-induced chondrogenesis. In synovial explants, DEX inhibited BMP-2-induced chondrogenesis almost completely, but had little impact on the TGF-β1-induced response. Our data reveal that steroids are not indispensable for the chondrogenesis of MSCs in vitro. Their influence is context dependent (tissue source of the MSCs, their microenvironment and the nature of the growth-factor). This finding has important implications for MSC based approaches to cartilage repair.
Resumo:
To assess human epidermal growth factor receptor-2 (HER2)-status in gastric cancer and matched lymph node metastases by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH).
Resumo:
OBJECTIVE: To compare the potential of bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7) and transforming growth factor beta1 (TGFbeta1) to effect the chondrogenic differentiation of synovial explants by analyzing the histologic, biochemical, and gene expression characteristics of the cartilaginous tissues formed. METHODS: Synovial explants derived from the metacarpal joints of calves were cultured in agarose. Initially, BMP-2 was used to evaluate the chondrogenic potential of the synovial explants under different culturing conditions. Under appropriate conditions, the chondrogenic effects of BMP-2, BMP-7, and TGFbeta1 were then compared. The differentiated tissue was characterized histologically, histomorphometrically, immunohistochemically, biochemically, and at the gene expression level. RESULTS: BMP-2 induced the chondrogenic differentiation of synovial explants in a dose- and time-dependent manner under serum- and dexamethasone-free conditions. The expression levels of cartilage-related genes increased in a time-dependent manner. BMP-7 was more potent than BMP-2 in inducing chondrogenesis, but the properties of the differentiated tissue were similar in each case. The type of cartilaginous tissue formed under the influence of TGFbeta1 differed in terms of both cell phenotype and gene expression profiles. CONCLUSION: The 3 tested members of the TGFbeta superfamily have different chondrogenic potentials and induce the formation of different types of cartilaginous tissue. To effect the full differentiation of synovial explants into a typically hyaline type of articular cartilage, further refinement of the stimulation conditions is required. This might be achieved by the simultaneous application of several growth factors.
Resumo:
Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.
Resumo:
An RNA transcribed from the antisense strand of the FGF-2 gene has been implicated in the regulation of FGF-2 mRNA stability in amphibian oocytes. We have now cloned and characterized a novel 1.1-kb mRNA (fgf-as) from neonatal rat liver. In non-central nervous system (CNS) tissues the fgf-as RNA is abundantly expressed in a developmentally regulated manner. The FGF-AS cDNA contains a consensus polyadenylylation signal and a long open reading frame (ORF) whose deduced amino acid sequence predicts a 35-kDa protein with homology to the MutT family of nucleotide hydrolases. Western blot analysis with antibodies against the deduced peptide sequence demonstrates that the FGF-AS protein is expressed in a broad range of non-CNS tissue in the postnatal period. In the developing brain, the abundance of sense and antisense transcripts are inversely related, suggesting a role for the antisense RNA in posttranscriptional regulation of FGF-2 expression in this tissue.The FGF-AS is complementary to two widely separated regions in the long 3′ untranslated region of the FGF-2 mRNA, in the vicinity of the proximal and distal polyadenylylation sites. These findings demonstrate that the FGF-2 and fgf-as RNAs are coordinately transcribed on a tissue-specific and developmentally regulated basis and suggest that interaction of the sense and antisense RNAs may result in posttranscriptional regulation of FGF-2 in some tissues.
Resumo:
Nerve growth factor (NGF) is a polypeptide which, in addition to its effect on nerve cells, is believed to play a role in inflammatory responses and in tissue repair. Because fibroblasts represent the main target and effector cells in these processes, to investigate whether NGF is involved in lung and skin tissue repair, we studied the effect of NGF on fibroblast migration, proliferation, collagen metabolism, modulation into myofibroblasts, and contraction of collagen gel. Both skin and lung fibroblasts were found to produce NGF and to express tyrosine kinase receptor (trkA) under basal conditions, whereas the low-affinity p75 receptor was expressed only after prolonged NGF exposure. NGF significantly induced skin and lung fibroblast migration in an in vitro model of wounded fibroblast and skin migration in Boyden chambers. Nevertheless NGF did not influence either skin or lung fibroblast proliferation, collagen production, or metalloproteinase production or activation. In contrast, culture of both lung and skin fibroblasts with NGF modulated their phenotype into myofibroblasts. Moreover, addition of NGF to both fibroblast types embedded in collagen gel increased their contraction. Fibrotic human lung or skin tissues displayed immunoreactivity for NGF, trkA, and p75. These data show a direct pro-fibrogenic effect of NGF on skin and lung fibroblasts and therefore indicate a role for NGF in tissue repair and fibrosis.
Resumo:
Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of the mouse albumin gene. Five transgenic lines were developed, all of which expressed the Alb/TGF-beta 1 transgene selectively in hepatocytes. The transgenic line 25 expressing the highest level of the transgene in the liver also had high (> 10-fold over control) plasma levels of TGF-beta 1. Hepatic fibrosis and apoptotic death of hepatocytes developed in all the transgenic lines but was more pronounced in line 25. The fibrotic process was characterized by deposition of collagen around individual hepatocytes and within the space of Disse in a radiating linear pattern. Several extrahepatic lesions developed in line 25, including glomerulonephritis and renal failure, arteritis and myocarditis, as well as atrophic changes in pancreas and testis. The results from this transgenic model strongly support the proposed etiological role for TGF-beta 1 in a variety of fibrotic and inflammatory disorders. The transgenic model may also provide an appropriate paradigm for testing therapeutic interventions aimed at neutralizing the detrimental effects of this important cytokine.
Resumo:
Adipose tissue forms when basement membrane extract ( Matrigel (TM)) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 mu L collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.
Resumo:
Adipose tissue mass in the newborn is determined in part by insulin-like growth factor (IGF)s, which are dependent on the maternal nutritional and metabolic environment during late gestation. The present study was designed to determine whether maternal cold exposure (CE) commencing in mid gestation could modulate some of the adaptive effects of nutrient restriction in late gestation on adipose tissue endocrine sensitivity in the resulting offspring. Twenty eight pregnant sheep were entered into the study and were either shorn, i.e. cold exposed, from 70 days gestation (term = 147 days), or remained unshorn, and were fed either their total calculated metabolisable energy (ME) requirements for body weight and pregnancy from 110 days gestation or 50% of this amount (n=7 per group). Adipose tissue was sampled from the offspring at one day of age and the mRNA abundance for IGF-I, II their receptors (R) and GH secretagogue receptor-1a (GHSR-1a) were determined. CE mothers produced larger offspring with more perirenal adipose tissue, an adaptation prevented by maternal nutrient restriction. Nutrient restriction in unshorn mothers increased IGF-I and IIR mRNA abundance. The mRNA abundances for IGF-I, II and IIR in adipose tissue were reduced by CE, adaptations independent of maternal food intake, whereas CE plus nutrient restriction increased GHSR-1a mRNA. In conclusion, maternal nutrient restriction with or without CE has very different effects on IGF sensitivity of adipose tissue and may act to ensure adequate fat stores are present in the newborn in the face of very different maternal endocrine and metabolic environments.
Resumo:
The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.