800 resultados para TIN ALLOYS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

defect metal alloy strip when thixorolling directly from the semi-solid state. To facilitate the study lead/tin alloys were chosen for their relatively low operating temperature. The objective is to extrapolate these findings to the higher temperature aluminium, alloys. Three alloys (70%Pb30%Sn, 60%Pb-40%Sn, 50%Pb-50%wtSn) were used particularly to study the influence of the solidification interval. The equipment consists of a two roll mill arranged as an upper and lower roller, where both rollers are driven at a controlled speed. The lower roller is fed with semi solid alloy through a ceramic nozzle attached to the lower end of a cooling slope. Several types of nozzle and their position at the roller were tested. This produced different solidifications and consequently different finished strip. The alloys were first cast and then poured onto the cooling slope through a tundish in order to create a continuous laminar flow of slurry and uniformity of metal strip quality. The pouring was tested at different positions along the slope. The cooling slope was coated with colloidal graphite to promote a smooth slurry flow and avoid the problem of adherence and premature solidification. The metallic slurry not only cools along the slope but is also initially super-cooled to a mush by the lower roller whilst at room temperatures, thus enabling thixorolling. It was also found that the nozzle position could be adjusted to enable the upper roller to also contribute to the solidification of the metallic slurry. However the rollers and the cooling slope naturally heat up. Temperature distribution in these zones was analysed by means of three thermocouples positioned along the cooling slope and a fourth in the base of the semi solid pool within the nozzle. The objective being to design an optimum pouring and cooling system. The formed strip was cooled down to room temperature with a shower of water. Microstructures of the thixorolling process were analysed. The differences in solidification conditions resulted in differing qualities of finished strip and corresponding defect types, all of which are a serious quality issue for the rolled product.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of the addition of mischmetal (MM) and tin (Sn) (total content of mischmetal and tin = 4 wt.%) on the microstructure, aging behavior and mechanical properties of Mg-6Zn-5Al-based alloys has been investigated. The microstructure of the as-cast alloys consists of alpha-Mg. Mg-32(Al,Zn)(49), Al2Mg5Zn2, Mg2Sn and Al2MMZn2 phases, and the morphology of these intermetallic phases varies with different MM and Sri additions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The drive to replace lead (Pb) from electronics has led to the replacement of tin (Sn) alloys as the terminal plating for electronic devices. However, the deposition of Sn based alloys as the component surface finish tends to induce Sn whisker that causes unintended electric shorts when the conductive whiskers grow across to the adjacent conductor. Internal stress is considered as the driving force that causes the growth of Sn whiskers. In this study, stress type of elevated temperature/ humidity exposure at 55C/85%RH with the storage for up to 24 months was conducted to define the acceleration factor in samples with deposition of immersion Sn plating and Sn solder dipping. The addition of Nickel (Ni) under-layer was also applied to examine the correlation to field conditions. The results showed that the whisker length increased in high humidity irrespective of the deposition methods. It was also shown that pure Sn solder dipping mitigated the whisker growth but does not completely prevent it when alloying Sn with 0.4%wtCu. Additionally, Ni under-layer was indicated to be more efficient in mitigating the growth of whisker by prolonging the incubation time for whisker formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solid oxide galvanic cell and a gas-solid (View the MathML source) equilibration technique have been used to measure the activities of the solutes in the α-solid solutions of silver with indium and tin. The results are consistent with the information now available for the corresponding liquid alloys, the phase diagram and the heats of mixing of the solid alloy. When the results of this study are taken together with published data for the α-solid solutions in Ag + Cd system, it is found that the variation of the excess partial free energy of the solute with mole fraction can be correlated to the electron/atom ratio. The significant thennodynamic parameter that explains the Hume-Rothery findings in these alloys appears to be the rate of change of the excess partial free energy with composition near the phase boundary, and this in turn reflects the value of the solute-solute interaction energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical potentials of tin in its α-solid solutions with Cu, Au and Cu + Au alloys have been measured using a gas-solid equilibration technique. The variation of the excess chemical potential of tin with its composition in the alloy is related to the solute-solute repulsive interaction, while the excess chemical potential at infinite dilution of the solute is a measure of solvent-solute interaction energies. It is shown that solute-solute interaction is primarily determined by the concentration of (s + p) electrons in the conduction band, although the interaction energies are smaller than those predicted by either the rigid band model or calculation based on Friedel oscillations in the potential function. Finally, the variation of the solvent-solute interaction with solvent composition in the ternary system can be accounted for in terms of a quasi-chemical treatment which takes into account the clustering of the solvent atoms around the solute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead-tin-telluride is a well-known thermoelectric material in the temperature range 350-750 K. Here, this alloy doped with manganese (Pb0.96-yMn0.04SnyTe) was prepared for different amounts of tin. X-ray diffraction showed a decrease of the lattice constant with increasing tin content, which indicated solid solution formation. Microstructural analysis showed a wide distribution of grain sizes from <1 mu m to 10 mm and the presence of a SnTe rich phase. All the transport properties were measured in the range of 300-720 K. The Seebeck coefficient showed that all the samples were p-type indicating holes as dominant carriers in the measurement range. The magnitude increased systematically on reduction of the Sn content due to possible decreasing hole concentration. Electrical conductivity showed the degenerate nature of the samples. Large values of the electrical conductivity could have possibly resulted from a large hole concentration due to a high Sn content and secondly, due to increased mobility by sp-d orbital interaction between the Pb1-ySnyTe sublattice and the Mn2+ ions. High thermal conductivity was observed due to higher electronic contribution, which decreased systematically with decreasing Sn content. The highest zT = 0.82 at 720 K was obtained for the alloy with the lowest Sn content (y = 0.56) due to the optimum doping level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead tin telluride is one of the well-established thermoelectric materials in the temperature range 350-750 K. In the present study, Pb0.75-xMnxSn0.25Te1.00 alloys with variable manganese (Mn) content were prepared by solid state synthesis and the thermoelectric properties were studied. X-ray diffraction, (XRD) showed that the samples followed Vegard's law, indicating solid solution formation and substitution of Mn at the Pb site. Scanning Electron Microscopy (SEM) showed that the grain sizes varied from <1 mu m to more than 10 mu m and MnTe rich phase was present for higher Mn content. Seebeck coefficient, electrical resistivity and thermal conductivity were measured from room temperature to 720 K. At 300 K, large Seebeck values were obtained, possibly due to increased effective mass on Mn substitution and low carrier concentration of the samples. At higher temperatures, transition from n-type to p-type indicated the presence of thermally generated carriers. Temperature dependent electrical resistivity showed the transition from degenerate to non-degenerate behavior. For thermal conductivity, low values (similar to 1 W/m-K at 300 K) were obtained. At higher temperatures bipolar conduction was observed, in agreement with the Seebeck and resistivity data. Due to low power factor, the maximum thermoelectric figure of merit (zT) was limited to 0.23 at 329 K for the sample with lowest Mn content (x=0.03). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system comprised of a Bomem interferometer and a LT3-110 Heli-Tran cryostat was set up to measure the reflectance of materials in the mid-infrared spectral region. Several tests were conducted to ensure the consistency and reliability of the system. Silicon and Chromium, two materials with well known optical properties were measured to test the accuracy of the system, and the results were found to be in good agreement with the literature. Reflectance measurements on pure SnTe and several Pb and Mn-doped alloys were carried out. These materials were chosen because they exhibit a strong plasma edge in the mid infrared region. The optical conductivity and several related optical parameters were calculated from the measured reflectance. Very low temperature measurements were carried out in the far-infrared on Sn9SMn2Te, and the results are indicative of a spin glass phase at 0.8 K. Resistivity measurements were made at room temperature. The resistivity values were found, as expected, to decrease with increasing carrier concentration and to increase with increasing manganese concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objet de la présente étude est le développement, l’application et la diffusion de la technologie associée à divers types d’alliages de cuivre, en particulier l’alliage du plomb-bronze, en Grèce ancienne, dans ses colonies, ainsi qu’en Étrurie. Le plomb-bronze est un mélange de diverses proportions d’étain, de cuivre et de plomb. Le consensus général chez les archéométallurgistes est que le plomb-bronze n’était pas communément utilisé en Grèce avant la période hellénistique; par conséquent, cet alliage a reçu très peu d’attention dans les documents d’archéologie. Cependant, les analyses métallographiques ont prouvé que les objets composés de plomb ajouté au bronze ont connu une distribution étendue. Ces analyses ont aussi permis de différencier la composition des alliages utilisés dans la fabrication de divers types de bronzes, une preuve tangible que les métallurgistes faisaient la distinction entre les propriétés du bronze d’étain et celles du plomb-bronze. La connaissance de leurs différentes caractéristiques de travail permettait aux travailleurs du bronze de choisir, dans bien des cas, l’alliage approprié pour une utilisation particulière. L’influence des pratiques métallurgiques du Proche-Orient a produit des variations tant dans les formes artistiques que dans les compositions des alliages de bronze grecs durant les périodes géométrique tardive et orientalisante. L’utilisation du plomb-bronze dans des types particuliers d’objets coulés montre une tendance à la hausse à partir de la période orientalisante, culminant dans la période hellénistique tardive, lorsque le bronze à teneur élevée en plomb est devenu un alliage commun. La présente étude analyse les données métallographiques de la catégorie des objets coulés en bronze et en plomb-bronze. Elle démontre que, bien que l’utilisation du plomb-bronze n’était pas aussi commune que celle du bronze d’étain, il s’agissait néanmoins d’un mélange important d’anciennes pratiques métallurgiques. Les ères couvertes sont comprises entre les périodes géométrique et hellénistique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and magnetic properties of Tin Selenide (SnSe) doped with Eu(2+) Sn(1-x)Eu(x)Se (x=2.5%) were investigated. Q-band (34 GHz) electron paramagnetic resonance measurements show that the site symmetry of Eu(2+) at 4.2 K is orthorhombic and the Lande factor was determined to be g=1.99 +/- 0.01. The exchange coupling between nearest-neighbor (NN) Eu(2+) ions was estimated from magnetization and magnetic-susceptibility measurements using a model that takes into account the magnetic contributions of single ions, pairs and triplets. The exchange interaction between Eu(2+) nearest neighbors was found to be antiferromagnetic with an estimated average value of J(p)/k(B) =-0.18 +/- 0.03 K. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition-metal (TM)-doped diluted magnetic oxides (DMOs) have attracted attention from both experimental and theoretical points of view due to their potential use in spintronics towards new nanostructured devices and new technologies. In the present work, we study the magnetic properties of Sn0.96TM0.04O2 and Sn0.96TM0.04O1.98(V (O))(0.02), where TM = Fe and Co, focusing in particular in the role played by the presence of O vacancies nearby the TM. The calculated total energy as a function of the total magnetic moment per cell shows a magnetic metastability, corresponding to a ground state, respectively, with 2 and 1 mu(B)/cell, for Fe and Co. Two metastable states, with 0 and 4 mu(B)/cell were found for Fe, and a single value, 3 mu(B)/cell, for Co. The spin-crossover energies (E (S)) were calculated. The values are E (S) (0/2) = 107 meV and E (S) (4/2) = 25 meV for Fe. For Co, E (S) (3/1) = 36 meV. By creating O vacancies close to the TM site, we show that the metastablity and E (S) change. For iron, a new state appears, and the state with zero magnetic moment disappears. The ground state is 4 mu(B)/cell instead of 2 mu(B)/cell, and the energy E (S) (2/4) is 30 meV. For cobalt, the ground state is then found with 3 mu(B)/cell and the metastable state with 1 mu(B)/cell. The spin-crossover energy E (S) (1/3) is 21 meV. Our results suggest that these materials may be used in devices for spintronic applications that require different magnetization states.