902 resultados para TIME-TREND ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (~200 km**2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis investigates the properties of two trends or time series which formed a:part of the Co-Citation bibliometric model "X~Ray Crystallography and Protein Determination in 1978, 1980 and 1982". This model was one of several created for the 1983 ABRC Science Policy Study which aimed to test the utility of bibliometric models in a national science policy context. The outcome of the validation part of that study proved to be especially favourable concerning the utility of trend data, which purport to model the development of speciality areas in science over time. This assessment could have important implications for the use of such data in policy formulation. However one possible problem with the Science Policy Study's conclusions was that insufficient time was available in the study for an in-depth analysis of the data. The thesis aims to continue the validation begun in the ABRC study by providing a detailed.examination of the characteristics of the data contained in the Trends numbered 11 and 44 in the model. A novel methodology for the analysis of the properties of the trends with respect to their literature content is presented. This is followed by an assessment based on questionnaire and interview data, of the ability of Trend 44 to realistically model the historical development of the field of mobile genetic elements research over time, with respect to its scientific content and the activities of its community of researchers. The results of these various analyses are then used to evaluate the strenghts and weaknesses of a trend or time series approach to the modelling of the activities of scientifiic fields. A critical evaluation of the origins of the discovered strengths and weaknesses.in the assumptions underlying the techniques used to generate trends from co-citation data is provided. Possible improvements. to the modelling techniques are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use time series analysis to evaluate predictive scenarios using search engine transactional logs. Our goal is to develop models for the analysis of searchers’ behaviors over time and investigate if time series analysis is a valid method for predicting relationships between searcher actions. Time series analysis is a method often used to understand the underlying characteristics of temporal data in order to make forecasts. In this study, we used a Web search engine transactional log and time series analysis to investigate users’ actions. We conducted our analysis in two phases. In the initial phase, we employed a basic analysis and found that 10% of searchers clicked on sponsored links. However, from 22:00 to 24:00, searchers almost exclusively clicked on the organic links, with almost no clicks on sponsored links. In the second and more extensive phase, we used a one-step prediction time series analysis method along with a transfer function method. The period rarely affects navigational and transactional queries, while rates for transactional queries vary during different periods. Our results show that the average length of a searcher session is approximately 2.9 interactions and that this average is consistent across time periods. Most importantly, our findings shows that searchers who submit the shortest queries (i.e., in number of terms) click on highest ranked results. We discuss implications, including predictive value, and future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catheter associated urinary tract infections (CAUTI) are a worldwide problem that may lead to increased patient morbidity, cost and mortality.1e3 The literature is divided on whether there are real effects from CAUTI on length of stay or mortality. Platt4 found the costs and mortality risks to be largeyetGraves et al found the opposite.5 A reviewof the published estimates of the extra length of stay showed results between zero and 30 days.6 The differences in estimates may have been caused by the different epidemiological methods applied. Accurately estimating the effects of CAUTI is difficult because it is a time-dependent exposure. This means that standard statistical techniques, such asmatched case-control studies, tend to overestimate the increased hospital stay and mortality risk due to infection. The aim of the study was to estimate excess length of stay andmortality in an intensive care unit (ICU) due to a CAUTI, using a statistical model that accounts for the timing of infection. Data collected from ICU units in lower and middle income countries were used for this analysis.7,8 There has been little research for these settings, hence the need for this paper.