35 resultados para THROUGHFALL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

汞是一种可以通过大气进行长距离跨国界进行传输的污染物,为了正确认识汞的全球大气循环演化规律,应该在全球不同区域内开展背景区大气不同形态汞含量的长期和高时间分辨率的观测研究。本论文工作利用高时间分辨率自动大气测汞仪(Tekran®2537A),于2005年8月~2006年7月对长白山地区大气气态总汞进行了连续一年的野外观测,同时按季节对该区大气中的颗粒态汞与活性气态汞进行了采集和分析。 研究结果表明,长白山地区大气气态总汞(TGM)的年平均含量为(3.22±1.78)ng•m-3。长白山地区大气气态总汞含量高于北半球大气汞含量的背景值(1.5~2.0 ng•m-3),表明该地区已受到一定程度的大气汞污染。该区气态总汞表现出季节变化规律,含量高低按季节表现为:冬季(3.61ng•m-3)>春季(3.44ng•m-3)>秋季(3.15ng•m-3)>夏季(2.56ng•m-3)。在对长白山地区大气汞来源的解析中,该区频率最高的指示风向西南(SW)、西北(NW)和非主导风向东北(NE)方位上,城镇人为采暖、燃煤和对生物燃料的使用成为该地区的大气汞的主要人为来源,而土壤释汞和其他来源的大气汞经中长距离迁移也是造成该区大气汞含量偏高的原因。 对长白山地区不同时段的颗粒态汞(PM)与活性气态汞(RGM)含量的研究结果发现,采样期间颗粒态汞含量平均值为(77±136)pg•m-3,活性气态汞含量平均值为(65±84)pg•m-3。利用该结果计算了不同形态汞对长白山地区大气汞的组成。结果显示气态原子汞的贡献比例最大,约为94.0%;其次为颗粒态汞(PM<2.5),贡献比例为2.4%;活性气态汞的比例2.0%;贡献最小的是颗粒态汞(PM>2.5),所占比例1.6%。 论文工作还测定了长白山地区一年的大气降水中的总汞浓度,利用该雨水中的总汞含量估算该地区一年汞的湿沉降通量,同时用穿透雨(Throughfall)方法和模型法对大气中汞的干沉降进行估算。结果表明:长白山地区大气汞的干沉降通量大于湿沉降通量,干、湿沉降通量分别为16.5μg•m-2•a-1(模型计算为20.2μg•m-2•a-1)和8.4μg•m-2•a-1,且大气汞的总沉降通量为24.9μg•m-2•a-1。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the ancient and acidic Ultisol soils of the Southern Piedmont, USA, we studied changes in trace element biogeochemistry over four decades, a period during which formerly cultivated cotton fields were planted with pine seedlings that grew into mature forest stands. In 16 permanent plots, we estimated 40-year accumulations of trace elements in forest biomass and O horizons (between 1957 and 1997), and changes in bioavailable soil fractions indexed by extractions of 0.05 mol/L HCl and 0.2 mol/L acid ammonium oxalate (AAO). Element accumulations in 40-year tree biomass plus O horizons totaled 0.9, 2.9, 4.8, 49.6, and 501.3 kg/ha for Cu, B, Zn, Mn, and Fe, respectively. In response to this forest development, samples of the upper 0.6-m of mineral soil archived in 1962 and 1997 followed one of three patterns. (1) Extractable B and Mn were significantly depleted, by -4.1 and -57.7 kg/ha with AAO, depletions comparable to accumulations in biomass plus O horizons, 2.9 and 49.6 kg/ha, respectively. Tree uptake of B and Mn from mineral soil greatly outpaced resupplies from atmospheric deposition, mineral weathering, and deep-root uptake. (2) Extractable Zn and Cu changed little during forest growth, indicating that nutrient resupplies kept pace with accumulations by the aggrading forest. (3) Oxalate-extractable Fe increased substantially during forest growth, by 275.8 kg/ha, about 10-fold more than accumulations in tree biomass (28.7 kg/ha). The large increases in AAO-extractable Fe in surficial 0.35-m mineral soils were accompanied by substantial accretions of Fe in the forest's O horizon, by 473 kg/ha, amounts that dwarfed inputs via litterfall and canopy throughfall, indicating that forest Fe cycling is qualitatively different from that of other macro- and micronutrients. Bioturbation of surficial forest soil layers cannot account for these fractions and transformations of Fe, and we hypothesize that the secondary forest's large inputs of organic additions over four decades has fundamentally altered soil Fe oxides, potentially altering the bioavailability and retention of macro- and micronutrients, contaminants, and organic matter itself. The wide range of responses among the ecosystem's trace elements illustrates the great dynamics of the soil system over time scales of decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015 by the authors.The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda) is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction) and fertilization (complete suite of nutrients). Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

São apresentados os resultados de pesquisa que quantificaram a precipitação efetiva e a interceptação das chuvas pelo dossel da floresta secundária de Mata Atlântica na microbacia experimental B, do Laboratório de Hidrologia Florestal Walter Emmerich, em Cunha-SP. No período de um ano foram medidos a precipitação no aberto, a precipitação interna e o escoamento pelo tronco das árvores, totalizando 54 coletas. Um pluviômetro em área aberta e 16 no interior da floresta foram utilizados para quantificação dos dois primeiros processos, respectivamente. Para determinação do escoamento pelo tronco foram instalados dispositivos de espuma de poliuretano em 38 árvores. A água interceptada foi estimada pela diferença entre a precipitação no aberto e a precipitação efetiva. Concluiu-se que, em média, 18,6% da precipitação foi interceptada pela floresta, retornando à atmosfera na forma de vapor. Um montante de 81,2% alcançou o piso como precipitação interna e apenas 0,2% como escoamento pelo tronco. Os fluxos de precipitação interna e escoamento pelo tronco foram maiores no período caracterizado como chuvoso. Os porcentuais de interceptação foram superiores no período pouco chuvoso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work of research was developed in rubber tree plantation, clone RRIM 600, with 15 years of age, in the region of Jose Bonifácio - SP, situated 21°03′ latitude (s), 49°41′ of longitude (w) and 490 altitude of m, to the sum of the micro watershed of the river Barra Grande. The research had the purpose to evaluate the redistribution of precipitations in hidric year 1995/96, esteem the rain precipitation, effective, throughfall, stemflow and the interception by canopies of the rubber tree. They had been installed the open sky and under the canopy of the trees rain gauges and interception of trunk to quantify (mm) the redistribution of rains. The annual average rain precipitation was of 1053,6 mm, the throughfall of 699,4 mm and stemflow for the 92,3 mm. the interception by canopies and the precipitation effective had resulted in 261,9 and 791,7 mm; being these respectively 24.9% and 75.1% of the rain precipitation in the rubber tree.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho foi realizado na Estação Cientifica Ferreira Penna, dentro da Floresta Nacional de Caxiuanã, Melgaço, Pará, Brasil (01º 42" 30"S; 51º 31" 45"W; 60 m altitude). A região é uma floresta de terra firme, com vegetação densa e dossel com altura média de 35 m e árvores emergentes acima de 50 m, densidade de 450 a 550 árvores por hectare. O objetivo foi o de quantificar a precipitação total incidente acima do dossel, precipitação efetiva e precipitação interna, o escoamento da água pelos troncos e interceptação da precipitação pela vegetação no período de março a dezembro de 2004, quando foram realizadas 40 coletas semanais. Na medida da precipitação interna foram utilizados 25 pluviômetros, distribuídos aleatoriamente em um hectare, subdividido em cem parcelas de 10 x 10 m, os escoamentos pelos troncos foram medidos em sete árvores com diâmetros à altura do peito (DAP) representativos para as árvores da área. O estudo revelou uma precipitação efetiva de 905,4 mm e precipitação interna de 885,4 mm, um escoamento pelos troncos de 20 mm e uma interceptação de 248 mm, correspondendo, a 78,5%, 76,8%, 1,7% e 21,5% da precipitação acima do dossel, que foi de 1.153,4 mm, no período de estudo, respectivamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forest cover has importance within the context of the water balance of a particular site and may alter the mechanism of entry of water and nutrients to the soil surface. The aim of this study was to quantify the net precipitation, interception, addition of nutrients in throughfall and stem flow in a forest in different stages of regeneration of Mata Atlantica: early-stage secondary forest (ESSF), intermediary stage secondary forest (ISSF) and advanced stage secondary forest (AESF). The study was conducted in Pinheiral, Rio de Janeiro state. The data collection was performed during the period of April 2009 to March 2010. The values of incident precipitation, effective precipitation and interception were similar among the three stages evaluated. The AESF area showed higher values of Mg and P in the addition of nutrients from throughfall compared with other areas assessed. The pH of the precipitation incident did not differ among areas, but was higher than the pH of rainfall. The three areas evaluated showed no difference in the addition of nutrients to flow through the trunk. The AESF area showed a trend of higher levels of addition of nutrients from throughfall precipitation and runoff from stemflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rainfall, throughfall and stemflow were monitored on an event basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. Stemflow samples were collected from 24 trees with a diameter at breast height (DBH) > 5 cm, as well as eight young and four full-grown babassu palms (Attalea speciosa Mart.) for 5 weeks during the peak of the wet season. We calculated rainfall, throughfall and stemflow concentrations and fluxes of Na+, K+, Ca2+, Mg2+,, Cl-, SO42-, NO3- and H+ and stemflow volume-weighted mean concentrations and fluxes for three size classes of broadleaf trees and three size classes of palms. The concentrations of most solutes were higher in stemflow than in rainfall and increased with increasing tree and palm size. Concentration enrichments from rainfall to stemflow and throughfall were particularly high (81-fold) for NO3-. Stemflow fluxes of NO3- and H+ exceeded throughfall fluxes but stemflow fluxes of other solutes were less than throughfall fluxes. Stemflow solute fluxes to the forest soil were dominated by fluxes on babassu palms, which represented only 4% of total stem number and 10% of total basal area. For NO3-, stemflow contributed 51% of the total mass of nitrogen delivered to the forest floor (stemflow + throughfall) and represented more than a 2000-fold increase in NO3- flux compared what would have been delivered by rainfall alone on the equivalent area. Because these highly localized fluxes of both water and NO3- persist in time and space, they have the potential to affect patterns of soil moisture, microbial populations and other features of soil biogeochemistry conducive to the creation of hotspots for nitrogen leaching and denitrification, which could amount to an important fraction of total ecosystem fluxes. Because these hotspots occur over very small areas, they have likely gone undetected in previous studies and need to be considered as an important feature of the biogeochemistry of palm-rich tropical forest. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful conservation of tropical montane forest, one of the most threatened ecosystems on earth, requires detailed knowledge of its biogeochemistry. Of particular interest is the response of the biogeochemical element cycles to external influences such as element deposition or climate change. Therefore the overall objective of my study was to contribute to improved understanding of role and functioning of the Andean tropical montane forest. In detail, my objectives were to determine (1) the role of long-range transported aerosols and their transport mechanisms, and (2) the role of short-term extreme climatic events for the element budget of Andean tropical forest. In a whole-catchment approach including three 8-13 ha microcatchments under tropical montane forest on the east-exposed slope of the eastern cordillera in the south Ecuadorian Andes at 1850-2200 m above sea level I monitored at least in weekly resolution the concentrations and fluxes of Ca, Mg, Na, K, NO3-N, NH4-N, DON, P, S, TOC, Mn, and Al in bulk deposition, throughfall, litter leachate, soil solution at the 0.15 and 0.3 m depths, and runoff between May 1998 and April 2003. I also used meteorological data from my study area collected by cooperating researchers and the Brazilian meteorological service (INPE), as well as remote sensing products of the North American and European space agencies NASA and ESA. My results show that (1) there was a strong interannual variation in deposition of Ca [4.4-29 kg ha-1 a-1], Mg [1.6-12], and K [9.8-30]) between 1998 and 2003. High deposition changed the Ca and Mg budgets of the catchments from loss to retention, suggesting that the additionally available Ca and Mg was used by the ecosystem. Increased base metal deposition was related to dust outbursts of the Sahara and an Amazonian precipitation pattern with trans-regional dry spells allowing for dust transport to the Andes. The increased base metal deposition coincided with a strong La Niña event in 1999/2000. There were also significantly elevated H+, N, and Mn depositions during the annual biomass burning period in the Amazon basin. Elevated H+ deposition during the biomass burning period caused elevated base metal loss from the canopy and the organic horizon and deteriorated already low base metal supply of the vegetation. Nitrogen was only retained during biomass burning but not during non-fire conditions when deposition was much smaller. Therefore biomass burning-related aerosol emissions in Amazonia seem large enough to substantially increase element deposition at the western rim of Amazonia. Particularly the related increase of acid deposition impoverishes already base-metal scarce ecosystems. As biomass burning is most intense during El Niño situations, a shortened ENSO cycle because of global warming likely enhances the acid deposition at my study forest. (2) Storm events causing near-surface water flow through C- and nutrient-rich topsoil during rainstorms were the major export pathway for C, N, Al, and Mn (contributing >50% to the total export of these elements). Near-surface flow also accounted for one third of total base metal export. This demonstrates that storm-event related near-surface flow markedly affects the cycling of many nutrients in steep tropical montane forests. Changes in the rainfall regime possibly associated with global climate change will therefore also change element export from the study forest. Element budgets of Andean tropical montane rain forest proved to be markedly affected by long-range transport of Saharan dust, biomass burning-related aerosols, or strong rainfalls during storm events. Thus, increased acid and nutrient deposition and the global climate change probably drive the tropical montane forest to another state with unknown consequences for its functions and biological diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric nitrogen (N) and phosphorus (P) depositions are expected to increase in the tropicsrnas a consequence of increasing human activities in the next decades. Furthermore, a possiblernshortened El Niño Southern Oscillation cycle might come along with more frequent calcium (Ca)rndepositions on the eastern slope of the Ecuadorian Andes originating from Saharan dust. It isrncrucial to understand the response of the old-growth montane forest in Ecuador to increasedrnnutrient deposition to predict the further development of this megadiverse ecosystem.rnI studied experimental additions of N, P, N+P and Ca to the forest and an untreatedrncontrol, all in a fourfold replicated randomized block design. These experiments were conductedrnin the framework of a collaborative research effort, the NUtrient Manipulation EXperimentrn(NUMEX). I collected litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfallrnand fine litterfall samples and determined N, P and Ca concentrations and fluxes. This approachrnalso allowed me to assess whether N, P and/or Ca are limiting nutrients for forest growth.rnFurthermore, I evaluated the response of fine root biomass, leaf area index, leaf area and specificrnleaf area, tree diameter growth and basal area increment contributed from a cooperating group inrnthe Ca applied and control treatments.rnDuring the observation period of 16 months after the first fertilizer application, less thanrn10, 1 and 5% of the applied N, P and Ca, respectively, leached below the organic layer whichrncontained almost all roots but no significant leaching losses occurred to the deeper mineral soil.rnDeposited N, P and Ca from the atmosphere in dry and wet form were, on balance, retained in therncanopy in the control treatment. Retention of N, P and Ca in the canopy in their respectiverntreatments was reduced resulting in higher concentrations and fluxes of N, P and Ca inrnthroughfall and litterfall. Up to 2.5% of the applied N and 2% of the applied P and Ca werernrecycled to the soil with throughfall. Fluxes of N, P and Ca in throughfall+litterfall were higher inrnthe fertilized treatments than in the control; up to 20, 5 and 25% of the applied N, P and Ca,rnrespectively, were recycled to the soil with throughfall+litterfall.rnIn the Ca-applied plots, fine root biomass decreased significantly. Also the leaf area of thernfour most common tree species tended to decrease and the specific leaf area increasedrnsignificantly in Graffenrieda emarginata Triana, the most common tree species in the study area.rnThese changes are known plant responses to reduced nutrient stress. Reduced aluminium (Al)rntoxicity as an explanation of the Ca effect was unlikely, because of almost complete organocomplexationrnof Al and molar Ca:Al concentration ratios in solution above the toxicity threshold.rnThe results suggest that N, P and Ca co-limit the forest ecosystem functioning in thernnorthern Andean montane forests in line with recent assumptions in which different ecosystemrncompartments and even different phenological stages may show different nutrient limitationsrn(Kaspari et al. 2008). I conclude that (1) the expected elevated N and P deposition will bernretained in the ecosystem, at least in the short term and hence, quality of river water will not bernendangered and (2) increased Ca input will reduce nutrient stress of the forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 −–N, NH4 +–N and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15–0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 − during the passage of rain water through the ecosystem and bulk δ15N values in soil to detect N transformations. Depletion of 15N in NO3 − and increased NO3 −–N fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 − concentrations progressively decreased and were enriched in 15N but did not reach the δ15N values of solid phase organic matter (δ15N = 5.6–6.7‰). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the δ15N value of NO3 − in litter leachate was smaller (δ15N = −1.58‰) than in the other quarters (δ15N = −9.38 ± SE 0.46‰) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 − between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 −–N from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 − gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-bound nitrogen (N) cycling in temperate terrestrial ecosystems of the Northern Hemisphere is today mainly inorganic because of anthropogenic release of reactive N to the environment. In little-industrialized and remote areas, in contrast, a larger part of N cycling occurs as dissolved organic N (DON). In a north Andean tropical montane forest in Ecuador, the N cycle changed markedly during 1998–2010 along with increasing N deposition and reduced soil moisture. The DON concentrations and the fractional contribution of DON to total N significantly decreased in rainfall, throughfall, and soil solutions. This inorganic turn of the N cycle was most pronounced in rainfall and became weaker along the flow path of water through the system until it disappeared in stream water. Decreasing organic contributions to N cycling were caused not only by increasing inorganic N input but also by reduced DON production and/or enhanced DON decomposition. Accelerated DON decomposition might be attributable to less waterlogging and higher nutrient availability. Significantly increasing NO3-N concentrations and NO3-N/NH4-N concentration ratios in throughfall and litter leachate below the thick organic layers indicated increasing nitrification. In mineral soil solutions, in contrast, NH4-N concentrations increased and NO3-N/NH4-N concentration ratios decreased significantly, suggesting increasing net ammonification. Our results demonstrate that the remote tropical montane forests on the rim of the Amazon basin experienced a pronounced change of the N cycle in only one decade. This change likely parallels a similar change which followed industrialization in the temperate zone of the Northern Hemisphere more than a century ago.