930 resultados para THERMAL GRAVIMETRIC ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance polyimide fibers possess man), excellent properties, e.g., outstanding thermal stability and mechanical properties and excellent radiation resistant and electrical properties. However, the preparation of fibers with good mechanical properties is very difficult. In this report, a biphenvl polyimide from 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline is synthesized in p-chlorophenol by one-step polymerization. The solution is spun into a coagulation bath of water and alcohol via dry-jet wet-spinning technology. Then, the fibers are drawn in two heating tubes. Thermal gravimetric analysis, thermal mechanical analysis, and dynamic mechanical analysis (DMA) are performed to study the properties of the fibers. The results show that the fibers have a good thermal stability at a temperature of more than 400degreesC. The linear coefficient of thermal expansion is negative in the solid state and the glass transition temperature is about 265degreesC. DMA spectra indicate that the tandelta of the fibers has three transition peaks, namely, alpha, beta, and gamma transition. The alpha and gamma transition temperature, corresponding to the end-group motion and glass transition, respectively, extensively depends on the applied frequency, while the beta transition does not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided. Copyright © American Association for Aerosol Research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents modeling results about the performance of flexible substrates when subjected to higher lead-free reflow temperatures. Both adhesiveless and adhesive types of polyimide substrates were studied. Finite element (FE) models of flex substrates were built, two copper tracks located in the centre of the substrate was considered. The thermal induced shear stress in the flex substrate during the lead-free reflow process was studied and the effect of the design changes including the track thickness, flex thickness, and copper width were studied. For both types of flexes, the one of most important variables for minimizing damage to the substrate is the height of the copper tracks. The height of flex and the width of copper track show less impact. Beside of the geometry effects, the increase in reflow peak temperature can also result in a significant increase in the interfacial stress between the copper track and flex. Higher stresses were identified within the adhesive flex due to the big CTE mismatch between the copper and adhesive/dielectric

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small-satellite thermal subsystem main function is to control temperature ranges on equipments, and payload for the orbit specified. Structure subsystem has to ensure the satellite structure integrity. Structure integrity should meet two constraints; first constraint is accepted fatigue damage due to cyclic temperature, and second one is tolerable mounting accuracy at payload and Attitude Determination and Control Subsystem (ADCS) equipments’ seats. First, thermal analysis is executed by applying finitedifference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, thermal fatigue analysis is performed applying finite-element analysis (ANSYS) to calculate the resultant damage due to on-orbit cyclic stresses, and structure deformations at the payload and ADCS equipments seats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mounting accuracy of satellite payload and ADCS (attitude determination and control subsystem) seats is one of the requirements to achieve the satellite mission with acceptable performance. Components of mounting inaccuracy are technological inaccuracies, residual plastic deformations after loading (during transportation and orbital insertion), elastic deformations, and thermal deformations during orbital operation. This paper focuses on estimation of thermal deformations of satellite structure. Thermal analysis is executed by applying finite-difference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, Perform thermal finite-element analysis applying the finite-difference model results as boundary conditions; and calculate the resultant thermal strain. Next, applying the resultant thermal strain, perform finite-element structure analysis to evaluate structure deformations at the payload and ADCS equipments seats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the evolution of the kinetic features of the martensitic transition in a Cu-Al-Mn single crystal under thermal cycling. The use of several experimental techniques including optical microscopy, calorimetry, and acoustic emission, has enabled us to perform an analysis at multiple scales. In particular, we have focused on the analysis of avalanche events (associated with the nucleation and growth of martensitic domains), which occur during the transition. There are significant differences between the kinetics at large and small length scales. On the one hand, at small length scales, small avalanche events tend to sum to give new larger events in subsequent loops. On the other hand, at large length scales the large domains tend to split into smaller ones on thermal cycling. We suggest that such different behavior is the necessary ingredient that leads the system to the final critical state corresponding to a power-law distribution of avalanches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal non-destructive testing (NDT) is commonly used for assessing aircraft structures. This research work evaluates the potential of pulsed -- transient thermography for locating fixtures beneath aircraft skins in order to facilitate accurate automated assembly operations. Representative aluminium and carbon fibre aircraft skin-fixture assemblies were modelled using thermal modelling software. The assemblies were also experimentally investigated with an integrated pulsed thermographic evaluation system, as well as using a custom built system incorporating a miniature un-cooled camera. Modelling showed that the presence of an air gap between skin and fixture significantly reduced the thermal contrast developed, especially in aluminium. Experimental results show that fixtures can be located to accuracies of 0.5 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer-assisted method for analysing photoacoustic spectra has been developed in the Windows(TM) environment with the use of an easy graphical interface, the computer simulation was carried out with the aim of using the entire expression of the Rosencwaig-Gersho theory, thus permitting multiple applications. The simulation was applied to a system that mimics the electron transfer process in which the concentration of octaethylporphin donor molecules was constant whereas the concentration of duroquinone and 2,3-dichloro-5,6-dicyano-1, l-benzoquinone acceptor molecules varied. The increment of the acceptor concentration influenced the photoacoustic amplitude and phase signals. In the phase signal a significant shift to smaller values was observed, denoting a faster heat generation. The analysis of the photoacoustic signal enabled the determination of the thermal diffusivity, the result obtained through the simulation was about (7 +/- 1) x 10(-7) m(2) s(-1) indicating that changes in the photoacoustic phase signals were due to the electron transfer process rather than changes in the thermal properties of the sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of thermogravimetric analysis (TGA) tests in PVC (1.0; 2.0 mm) and HDPE (0.8; 2.5 mm) geomembranes exposed to weathering and leachate after 30 months. The aim of this paper is the comparison of fresh and exposed samples to assess the degradation process concerning the total loss of mass of geomembranes. The exposure was conducted in accordance with the recommendations of ASTM standards. The TGA tests were carried out according to ASTM D6370 and E2105. Results show, for instance, that for PVC geomembrane the largest reductions of plasticizers occurred for samples exposed to weathering. The loss of plasticizers after the exposure contributed to the decrease of deformation and consequent increase in stiffness. TGA tests shows to be a valuable tool to control the quality of the materials. © 2012 ejge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulation of design basis accidents in a containment building is usually conducted with a lumped parameter model. The codes normally used by Westinghouse Electric Company (WEC) for that license analysis are WGOTHIC or COCO, which are suitable to provide an adequate estimation of the overall peak temperature and pressure of the containment. However, for the detailed study of the thermal-hydraulic behavior in every room and compartment of the containment building, it could be more convenient to model the containment with a more detailed 3D representation of the geometry of the whole building. The main objective of this project is to obtain a standard PWR Westinghouse as well as an AP1000® containment model for a CFD code to analyze the thermal-hydraulic detailed behavior during a design basis accident. In this paper the development and testing of both containment models is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of thermal degradation products evolved during the melt processing of organo-layered silicates (OLS) was carried out via the use of a solid phase microextraction (SPME) technique. Two commerical OLSs and one produced in-house were prepared for comparision. The solid phase microextraction technique proved to be a very effective technique for investigating the degradation of the OLS at a specific processing temperature. The results showed that most available OLSs will degrade under typical conditions required for the melt processing of many polymers, including thermoplastic polyurethanes. It is suggested that these degradation products may lead to changes in the structure and properties of the final polymer, particularly in thermoplastic polyurethanes, which seem significantly succeptable to the presence of these products. It is also suggested that many commercially available OLSs are produced in such a way that results in an excess of unbound organic modifier, giving rise to a greater quantity of degradation products. All OLSs where compared and characterised by TGA and GC-MS. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and thermal properties of yttrium alumino-phosphate glasses, of nominal composition (Y2O3)(0.31-z)(Al2O3)(z)(P2O5)(0.69) with 0 less than or similar to z less than or similar to 0.31, were studied by using a combination of neutron diffraction, Al-27 and P-31 magic angle spinning nuclear magnetic resonance, differential scanning calorimetry and thermal gravimetric analysis methods. The Vickers hardness of the glasses was also measured. The data are compared to those obtained for pseudo-binary Al2O3-P2O5 glasses and the structure of all these materials is rationalized in terms of a generic model for vitreous phosphate materials in which Y3+ and Al3+ act as modifying cations that bind only to the terminal (non-bridging) oxygen atoms of PO4 tetrahedra. The results are used to help elucidate the phenomenon of rare-earth clustering in phosphate glasses which can be reduced by substituting Al3+ ions for rare-earth R3+ ions at fixed modifier content.