988 resultados para THERMAL DIFFUSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Characterization of silver- and gold-related defects in gallium arsenide is carried out. These impurities were introduced during the thermal diffusion process and the related defects are characterized by deep-level transient spectroscopy and photoluminescence. The silver-related center in GaAs shows a 0.238 eV photoluminescence line corresponding to no-phonon transition, whereas its thermal ionization energy is found to be 0.426 eV. The thermal activation energy of the gold-related center in GaAs is 0.395 eV, but there is no corresponding luminescence signal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waveguides were fabricated on GeGaSEr chalcogenide glass using ultrafast laser inscription method. The thermal diffusion model is discussed for understanding the light matter interaction and shown the effect of net-fluence in waveguide formation on chalcogenide glass. (C) 2012 Optical Society of America

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Floating zone crystal growth in microgravity environment is investigated numerically by a finite element method for semiconductor growth processing, which involves thermocapillary convection, phase change convection, thermal diffusion and solutal diffusion. The configurations of phase change interfaces and distributions of velocity, temperature and concentration fields are analyzed for typical conditions of pulling rates and segregation coefficients. The influence of phase change convection on the distribution of concentration is studied in detail. The results show that the thermocapillary convection plays an important role in mixing up the melt with dopant. The deformations of phase change interfaces by thermal convection-diffusion and pulling rods make larger variation of concentration field in comparison with the case of plane interfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical description of thermo-plastic instability in simple shear is presented in a system of equations describing plastic deformation, the first law of thermodynamics and Fourier's heat transfer rule. Both mechanical and thermodynamical parameters influence instability and it is shown that two different modes of instability may exist. One of them is dominated by thermal softening and has a characteristic time and length, connected to each other by thermal diffusion.A criterion combining thermal softening, current stress, density, specific heat, work-hardening, thermal conductivity and current strain rate is obtained and practical implications are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AgInSbTelSi thin films on glass substrates are prepared by dc magnetron sputtering at room temperature. Using Si underlayer as the thermal diffusion layer, the super-resolution nano-ablation holes with a size of 70nm in the AgInSbTe phase change films are obtained by a far-field focused laser experimental setup, with laser wavelength 405nm and objective-lens numerical aperture 0.90. The nano-ablation formation mechanism is analysed and discussed via the thermal diffusion of sample structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In experiments, we have found an abnormal relationship between probability of laser induced damage and number density of surface inclusion. From results of X-ray diffraction (XRD) and laser induced damage, we have drawn a conclusion that bulk inclusion plays a key role in damage process. Combining thermo-mechanical damage process and statistics of inclusion density distribution, we have deduced an equation which reflects the relationship between probability of laser induced damage, number density of inclusion, power density of laser pulse, and thickness of films. This model reveals that relationship between critical sizes of the dangerous inclusions (dangerous inclusions refer to the inclusions which can initialize film damage), embedded depth of inclusions, thermal diffusion length and tensile strength of films. This model develops the former work which is the statistics about surface inclusion. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have performed thermal diffusion measurements of nanofluid containing gold and rhodamine 6G dye in various ratios. At certain concentrations, gold is nearly four times more efficient than water in dissipating small temperature fluctuations in a medium, and therefore it will find applications as heat transfer fluids. We have employed dual-beam mode-matched thermal lens technique for the present investigation. It is a sensitive technique in measuring photothermal parameters because of the use of a lowpower, stabilized laser source as the probe. We also present the results of fluorescence measurements of the dye in the nanogold environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, we describe our efforts to develop device quality CuInSe2, films through low cost, simple and eco-friendly hybrid techniques. The most important point to be highlighted here is that the method fully avoids the use of poisonous gases such as H2Se/Se vapour. Instead, selenisation is achieved through solid state reaction between amorphous selenium and polycrystalline metal layers resulting in both binary and ternary selenides. Thin films of amorphous selenium (a-Se) used for this is deposited using Chemical Bath Deposition (CBD). CulnSe2 films are prepared through the selenisation process. Another PV material, indium selenide (In2Se3) thin films are also prepared using this process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The temperature dependence has been investigated for the photoinduced birefringence in Langmuir-Blodgett (LB) films from the azocopolymer 4-[N- ethyl -N-(2-hydroxyethyl)] amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) mixed with cadmium stearate. The buildup and relaxation of the birefringence in the range from 20 to 296 K were fitted with a Kohlrausch-Williams-Watts (KWW) function, with a beta-value of 0.78-0.98 for the build-up and 0.18-0.27 for the decay. This is consistent with a distribution of time constants for the kinetics of the birefringence processes. The maximum birefringence increased with increasing temperature up to 120 K because the free volume fluctuation also increased with temperature. Above 120 K, the birefringence decreased with temperature as thermal diffusion dominates. In the latter range of temperature, an Arrhenius behavior is inferred for both build-up and decay of birefringence. In each case two activation energies were obtained: 0.8 and 5 kJ/mol for the build-up and 10 and 30 kJ/mol for the decay. The energies for the build-up are much lower than those associated with motion of the polymer chain, which means that the dynamics is governed by the orientation of the chromophores. For the decay, local motion of lateral groups of the polymer chains becomes important as the activation energies are within the range of gamma-relaxation energies. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The specific heat, thermal conductivity, thermal diffusivity and density of Brazilian orange juice were determined between 0.34 and 0.73 (w/w) water content and with temperatures from 0.5 to 62°C. The experimental data were fitted as functions of temperature and water content and all properties showed a linear dependency with these variables. In the tested range, the water content exhibited a greater influence on the analyzed properties than temperature. © 1998 Elsevier Science Limited. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider a three-dimensional heat diffusion model to explain the growth of oxide films which takes place when a laser beam is shined on and heats a metallic layer deposited on a glass substrate in a normal atmospheric environment. In particular, we apply this model to the experimental results obtained for the dependence of the oxide layer thickness on the laser density power for growth of TiO2 films grown on Ti-covered glass slides. We show that there is a very good agreement between the experimental results and the theoretical predictions from our proposed three-dimensional model, improving the results obtained with the one-dimensional heat diffusion model previously reported. Our theoretical results also show the occurrence of surface cooling between consecutive laser pulses, and that the oxide track surface profile closely follows the spatial laser profile indicating that heat diffusive effects can be neglected in the growth of oxide films by laser heating. © 2001 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Usamos uma metodologia experimental para investigar propriedades ópticas e térmicas da oleína de palma (OP), a fração líquida do azeite de palma (Elaies guineensis) obtida por fracionamento natural, com propriedades físicas que diferem apreciavelmente do azeite. Em uma primeira abordagem, estudamos os espectros de absorção e emissão monitorando a modificação dos espectros com o aumento da concentração β-caroteno misturado com OP, o que permitiu encontrar o coeficiente de absorção molar do β-caroteno (ε = 920,802 mol -1.cm-1.L). Este valor é muito baixo em relação aos conhecidos para o β-caroteno diluído em um solvente puro, como o benzeno ou o n-hexano. Experimentos feitos com β-caroteno diluído em hexano nos permitiram medir ε = 117.900 L.mol-1.cm-1, que representa aproximadamente 18% abaixo dos valores reportados na literatura. Em uma segunda abordagem, os espectros de absorção foram usados para medir o coeficiente de absorção da OP, A = 0,028 cm-1 em 532 nm, o comprimento de onda de um laser usado como fonte de excitação no estudo das propriedades térmicas da OP usando a técnica de lente térmica. Neste sentido foi medido também o coeficiente térmico do índice de refração da OP, dn/dt = - 3,821 x 10 -4 °C -1. Estes resultados, associados ao modelo aberrante para estudos de espectroscopia de lente térmica, levaram à medição do coeficiente de difusão, D = 2,19 ± 0,11 x 10-4 cm2/s, e da condutividade térmica, k = 5,96 ± 0,08 W/m°C. Embora as medidas das propriedades térmicas da OP não sejam ainda conhecidas na literatura, observa-se que elas têm as mesmas ordens de grandeza daquelas já conhecidas para outros óleos vegetais que foram relatadas na literatura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] On 8-10 April 2007, several episodes of intense sea-breeze fronts were registered at the island of Fuerteventura (Canary Islands). The sea-breeze circulation was primary driven by daytime heating contrasts between land and the Atlantic Ocean during a period of weak trade winds. Numerical simulations of these events were carried out using the 3.1.1 version of the Weather Research and Forecasting (WRF) Model. Two different domains with 6.6-km and 2.2-km horizontal grid spacing and two sets with 27 and 51 vertical sigma levels were defined. The simulation was performed using two-way interactive nesting between the first and the second domain, using different land surface model parameterizations (Thermal diffusion, Noah LSM and RUC) for comparison. Initial conditions were provided by the NCAR Dataset analysis from April 2007, which were improved using surface and upper-air observations. The poster is focused on the 9 April episode.