957 resultados para TGM concentration in air


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic atmosphere generator with a naphthalene emission source has been constructed and used for the development and evaluation of a bioluminescence sensor based on the bacteria Pseudomonas fluorescens HK44 immobilized in 2% agar gel (101 cell mL(-1)) placed in sampling tubes. A steady naphthalene emission rate (around 7.3 nmol min(-1) at 27 degrees C and 7.4 mLmin(-1) of purified air) was obtained by covering the diffusion unit containing solid naphthalene with a PTFE filter membrane. The time elapsed from gelation of the agar matrix to analyte exposure (""maturation time"") was found relevant for the bioluminescence assays, being most favorable between 1.5 and 3 h. The maximum light emission, observed after 80 min, is dependent on the analyte concentration and the exposure time (evaluated between 5 and 20 min), but not on the flow rate of naphthalene in the sampling tube, over the range of 1.8-7.4 nmol min(-1). A good linear response was obtained between 50 and 260 nmol L-1 with a limit of detection estimated in 20 nmol L-1 far below the recommended threshold limit value for naphthalene in air. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive method to determine parts per billion (ppb) of atmospheric formaldehyde in situ, using chromotropic acid, is described. A colorimetric sensor, coupled to a droplet of 15.5 muL chromotropic acid, was constructed and used to sample and quantify formaldehyde. The sensor was set up with two optical fibers, a right emitting diode (LED) and two photodiodes. The reference and transmitted light were measured by a photodetection arrangement that converts the signals into units of absorbance. Air was sampled around the chromotropic acid droplet. A purple product was formed and measured after the sampling terminated (typically 7 min). The response is proportional to the sampling period, analyte concentration and sample flow rate. The detection limit is similar to2 ppb and can be improved by using longer sampling times and/or a sampling flow rate higher than that used in this work, 200 mL min(-1). The present technique affords a simple, inexpensive near real-time measurement with very little reagent consumption. The method is selective and highly sensitive. This sensor could be used either for outdoor or indoor atmospheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive method for determining atmospheric ammonia (NH3), using a hanging drop, is described. A colorimetric sensor is composed of two optical fibers and the source of monochromatic light implemented was a red light emitting diode (LED) (635 nm). Preliminary experiments were carried out in order to optimize the geometry of the sensor. These tests showed that the best signal absorbance was obtained using a 22 muL deionized water drop for sampling the gas and as addition of 4 muL of each of the reactants to form the blue dye (indophenol). Some important analytical parameters were also studied, including sampling time and flow rate. The analytical curve was constructed with a concentration range of 3-20 ppbv of gaseous NH3 standard. The detection limit reached was of ca 0.5 ppbv. It was observed that formaldehyde and diethylamine did not interfere. However, studies showed that hydrogen sulfide caused a negative interference of 20%, when present in the atmosphere in a concentration equal to that of NE3. The method considered here was shown to be easy to apply, making it possible to make a determination every 17 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of sulfur dioxide in air at the parts-per-billion level is described. The experimental arrangement consists of two optical fibers placed on opposite sides of a liquid droplet of malachite green solution. After light has been passed through the droplet, the transmitted light is measured by a referenced photodetection arrangement. The light used in this absorption process is from a monochromatic source (lambda(max) 625 nm). This arrangement permits the variation of color in the droplet to be measured. The sulfur dioxide in the sample is collected by the droplet; it reacts with malachite green resulting in a colorless dye. The decoloration of the solution is proportional to the concentration of sulfur dioxide sampled. The signal depends on the sample flow rate. The present technique is simple, inexpensive, and permits a fast and near real time measurement while consuming very little reagent, (C) 1999 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the preconcentration of tioethers in air by means of the passage of gas flow on solid sorbents coated with sodium tetrachloropalladate was undertaken with the aim of achieving chemical fixation. This fixation presented high specificity and blocked the migration of the sorbed compound through the other active sites. The species obtained were selectively dissolved in organic solvents, resulting in the sulfur reduced compound concentration in the organic phase, which could be determined spectrophotometrically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43-84, 15-3,480, 2-133, 5-459, and 2-236 μg m-3 for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (concentrations are lower at the ecological printing environment than in the conventional, where mineral oil-based inks are used. However, the worker who cleans the printing matrices is exposed to high concentrations of ethylbenzene and xylenes, due probably to the cleaning product's composition (containing high amounts of BTEX). Although the BTEX concentrations found in both printing work environments were below the limits considered by the Brazilian Law for Activities and Unhealthy Operations (NR-15), the exposure to such vapors characterizes risk to the workers' health for some of the evaluated samples, mainly the personal ones. © Springer Science+Business Media B.V. 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wasserlösliche organische Verbindungen (WSOCs) sind Hauptbestandteile atmosphärischer Aerosole, die bis zu ~ 50% und mehr der organischen Aerosolfraktion ausmachen. Sie können die optischen Eigenschaften sowie die Hygroskopizität von Aerosolpartikeln und damit deren Auswirkungen auf das Klima beeinflussen. Darüber hinaus können sie zur Toxizität und Allergenität atmosphärischer Aerosole beitragen.In dieser Studie wurde Hochleistungsflüssigchromatographie gekoppelt mit optischen Diodenarraydetektion und Massenspektrometrie (HPLC-DAD-MS und HPLC-MS/MS) angewandt, um WSOCs zu analysieren, die für verschiedene Aerosolquellen und -prozesse charakteristisch sind. Niedermolekulare Carbonsäuren und Nitrophenole wurden als Indikatoren für die Verbrennung fossiler Brennstoffe und die Entstehung sowie Alterung sekundärer organischer Aerosole (SOA) aus biogenen Vorläufern untersucht. Protein-Makromoleküle wurden mit Blick auf den Einfluss von Luftverschmutzung und Nitrierungsreaktionen auf die Allergenität primärer biologischer Aerosolpartikel – wie Pollen und Pilzsporen – untersucht.rnFilterproben von Grob- und Feinstaubwurden über ein Jahr hinweg gesammelt und auf folgende WSOCs untersucht: die Pinen-Oxidationsprodukte Pinsäure, Pinonsäure und 3-Methyl-1,2,3-Butantricarbonsäure (3-MBTCA) sowie eine Vielzahl anderer Dicarbonsäuren und Nitrophenole. Saisonale Schwankungen und andere charakteristische Merkmale werden mit Blick auf Aerosolquellen und -senken im Vergleich zu Daten anderen Studien und Regionen diskutiert. Die Verhätlnisse von Adipinsäure und Phthalsäure zu Azelainsäure deuten darauf hin, dass die untersuchten Aerosolproben hauptsächlich durch biogene Quellen beeinflusst werden. Eine ausgeprägte Arrhenius-artige Korrelation wurde zwischen der 3-MBTCA-¬Konzentration und der inversen Temperatur beobachtet (R2 = 0.79, Ea = 126±10 kJ mol-1, Temperaturbereich 275–300 K). Modellrechnungen zeigen, dass die Temperaturabhängigkeit auf eine Steigerung der photochemischen Produktionsraten von 3-MBTCA durch erhöhte OH-Radikal-Konzentrationen bei erhöhten Temperaturen zurückgeführt werden kann. Im Vergleich zur chemischen Reaktionskinetik scheint der Einfluss von Gas-Partikel-Partitionierungseffekten nur eine untergeordnete Rolle zu spielen. Die Ergebnisse zeigen, dass die OH-initiierte Oxidation von Pinosäure der geschwindigkeitsbestimmende Schritt der Bildung von 3-MBTCA ist. 3-MBTCA erscheint somit als Indikator für die chemische Alterung von biogener sekundärer organischer Aerosole (SOA) durch OH-Radikale geeignet. Eine Arrhenius-artige Temperaturabhängigkeit wurde auch für Pinäure beobachtet und kann durch die Temperaturabhängigkeit der biogenen Pinen-Emissionen als geschwindigkeitsbestimmender Schritt der Pinsäure-Bildung erklärt werden (R2 = 0.60, Ea = 84±9 kJ mol-1).rn rnFür die Untersuchung von Proteinnitrierungreaktionen wurde nitrierte Protein¬standards durch Flüssigphasenreaktion von Rinderserumalbumin (BSA) und Ovalbumin (OVA) mit Tetranitromethan (TNM) synthetisiert.Proteinnitrierung erfolgt vorrangig an den Resten der aromatischen Aminosäure Tyrosin auf, und mittels UV-Vis-Photometrie wurde der Proteinnnitrierungsgrad (ND) bestimmt. Dieser ist definiert als Verhältnis der mittleren Anzahl von Nitrotyrosinresten zur Tyrosinrest-Gesamtzahl in den Proteinmolekülen. BSA und OVA zeigten verschiedene Relationen zwischen ND und TNM/Tyrosin-Verhältnis im Reaktionsgemisch, was vermutlich auf Unterschiede in den Löslichkeiten und den molekularen Strukturen der beiden Proteine zurück zu führen ist.rnDie Nitrierung von BSA und OVA durch Exposition mit einem Gasgemisch aus Stickstoffdioxid (NO2) und Ozon (O3) wurde mit einer neu entwickelten HPLC-DAD-¬Analysemethode untersucht. Diese einfache und robuste Methode erlaubt die Bestimmung des ND ohne Hydrolyse oder Verdau der untersuchten Proteine und ernöglicht somit eine effiziente Untersuchung der Kinetik von Protein¬nitrierungs-Reaktionen. Für eine detaillierte Produktstudien wurden die nitrierten Proteine enzymatisch verdaut, und die erhaltenen Oligopeptide wurden mittels HPLC-MS/MS und Datenbankabgleich mit hoher Sequenzübereinstimmung analysiert. Die Nitrierungsgrade individueller Nitrotyrosin-Reste (NDY) korrelierten gut mit dem Gesamt-Proteinnitrierungsgrad (ND), und unterschiedliche Verhältnisse von NDY zu ND geben Aufschluss über die Regioselektivität der Reaktion. Die Nitrierungmuster von BSA und OVA nach Beahndlung mit TNM deuten darauf hin, dass die Nachbarschaft eines negativ geladenen Aminosäurerestes die Tyrosinnitrierung fördert. Die Behandlung von BSA durch NO2 und O3 führte zu anderend Nitrierungemustern als die Behandlung mit TNM, was darauf hindeutet, dass die Regioselektivität der Nitrierung vom Nitrierungsmittel abhängt. Es zeigt sich jedoch, dass Tyrosinreste in Loop-Strukturen bevorzugt und unabhängig vom Reagens nitriert werden.Die Methoden und Ergebnisse dieser Studie bilden eine Grundlage für weitere, detaillierte Untersuchungen der Reaktionskinetik sowie der Produkte und Mechanismen von Proteinnitrierungreaktionen. Sie sollen helfen, die Zusammenhänge zwischen verkehrsbedingten Luftschadstoffen wie Stickoxiden und Ozon und der Allergenität von Luftstaub aufzuklären.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transfer coefficient of radon from water to air was investigated in schools. Kitchens, bathrooms and locker rooms were studied for seven schools in Maine. Simulations were done in water-use rooms where radon in air detectors were in place. Quantities measured were radon in water (270-24500 F) and air (0-80 q), volume of water used, emissivities (0.01-0.99) and ventilation rates (0.012-0.066A). Variation throughout the room of the radon concentration was found. Values calculated for the transfer coefficient for kitchens and baths were ranged from 9.6 x to 2.0 x The transfer coefficient was calculated using these parameters and was also measured using concentrations of radon in water and air. This provides a means by which radon in air can be estimated using the transfer coefficient and the concentration in the water in other schools and it can be used to estimate the dose caused by radon released from water use. This project was partially funded by the United States Environmental Protection Agency (grant #X828l2 101-0) and by the State of Maine (grant #10A500178). These are the first measurements of this type to be done in schools in the United States.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present field measurements of air-sea gas exchange by the radon deficit method that were carried out during JASIN 1978 (NE Atlantic) and FGGE 1979 (Equatorial Atlantic). Both experiments comprised repeated deficit measurements at fixed position over periods of days or longer, using a previously descibed precise and fast-acquiaition, automatic radon measuring system. The deficit time series exhibit variations that only partly reflect the expected changes in gas transfer. By evaluating averages over each time series we deduce the following gas transfer velocities (average wind velocity and water temperature in parentheses): JASIN phase 1: 1.6 ± 0.8 m/d (at ~6 m/s, 13°C) JASIN phase 2: 4.3 ± 1.2 m/d (at ~8 m/s, 13°C) FGGE: 1.2 ± 0.4 m/d (at ~5 m/s, 28°C) 0.9 ± 0.4 m/d (at ~7 m/s, 28°C) 1.5 ± 0.4 m/d (at ~7 m/s, 28°C) The large difference betwen the JASIN phase 2 and FGGE values despite quite similare average wind velocity becomes even larger when the values are, however, fully compatible with the range of gas transfer velocities observed in laboratory experiments and the conclusion is suggested that their difference is caused by the highly different wind variability in JASIN and FGGE. We conclude that in gas exchange parameterization it is not sufficinent to consider wind velocity only. A comparison of our observations with laboratory results outlines the range of variations of air-sea gas transfer velocities with wind velocity and sea state. We also reformulate the radon deficit method, in the light of our observed deficit variations, to account explicitely for non-stationary and horizontal inhomogeneity in previous radon work introduces considerable uncertainty in deduced gas transfere velocity. We furthermore discuss the observational rewuirements that have to be met for an adequate exploitation of the radon deficit method, of which an observation area of minimum horizontal inhomogeneity and monitoring of the remaining inhomogeneities are thought to be the most stringent ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A research programme is being carried out at the Institute Nacional de Tecnica Aeroespacial of Spain, on several aspects of the formation of nitrogen oxides in continuous flow combustion systems, considering hydrogen and hydrocarbons as fuels. The research programme is fundamentally oriented on the basic aspects of the problem, although it also includes the study of the influence on the formation process of several operational and design variables of the combusters, such as type of fuels, fuel/air ratio, degree of mixing in premixed type flames, existence of droplets as compared with homogeneous combustion.This problem of nitrogen oxides formation is receiving lately great attention, specially in connection with automobile reciprocating engines and aircraft gas turbines. This is due to the fact of the increasing frequency and intensity of photochemical hazes or smog, typical of urban areas submitted to strong solar radiation, which are originated by the action on organic compounds of the oxidants resulting from the photochemical decomposition of nitrogen dioxide N02. In the combustion process almost all nitrogen oxides are in form of NO. This nitric oxide reacts with the oxygen of the air and forms N02, this reaction only taking place in or near the exhaust of tne motors, since the N0-02 reaction becomes frozen for the concentration existing in the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An evaluation of the concentration levels of Particulate Matter (PM) was carried out in Madrid (Spain) by introducing the emissions from road dust resuspension. Road dust resuspension emission factors (EF) for different types of vehicles were calculated from EPA-AP42, a global resuspension factor of 0.097 g veh−1km−1 as described in Amato et al. (2010) and a rain-dependent correction factor. With these resuspension EFs, a simulation at street canyon level was performed with the OSPM model without rainfall. Subsequently, a simulation using the CMAQ model was implemented adding resuspension emissions affected by the rain. These data were compared with monitored data obtained from air quality stations. OSPM model simulations with resuspension EFs but without the effect of rainfall improve the PM estimates in about 20gm−3μ compared to the simulation with default EFs. Total emissions were calculated by adding the emissions estimated with resuspension EFs to the default PM emissions to be used by CMAQ. For the study in the Madrid Area, resuspension emissions are approximately of the same order of magnitude as inventoried emissions. On a monthly scale, rain effects are negligible for resuspension emissions due to the dry weather conditions of Spain. With the exception of April and May, the decrease in resuspension emissions is not >3%. The predicted PM10 concentration increases up to 9μ gm−3 on annual average for each station compared to the same scenario without resuspension. However, in both cases, PM 10 estimates with resuspension are still underestimating observations. It should be noted that although that accounting for resuspension improves the quality of model predictions, other PM sources (e.g., Saharan dust) were not considered in this study.