902 resultados para TEXTURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A good object representation or object descriptor is one of the key issues in object based image analysis. To effectively fuse color and texture as a unified descriptor at object level, this paper presents a novel method for feature fusion. Color histogram and the uniform local binary patterns are extracted from arbitrary-shaped image-objects, and kernel principal component analysis (kernel PCA) is employed to find nonlinear relationships of the extracted color and texture features. The maximum likelihood approach is used to estimate the intrinsic dimensionality, which is then used as a criterion for automatic selection of optimal feature set from the fused feature. The proposed method is evaluated using SVM as the benchmark classifier and is applied to object-based vegetation species classification using high spatial resolution aerial imagery. Experimental results demonstrate that great improvement can be achieved by using proposed feature fusion method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vector field visualisation is one of the classic sub-fields of scientific data visualisation. The need for effective visualisation of flow data arises in many scientific domains ranging from medical sciences to aerodynamics. Though there has been much research on the topic, the question of how to communicate flow information effectively in real, practical situations is still largely an unsolved problem. This is particularly true for complex 3D flows. In this presentation we give a brief introduction and background to vector field visualisation and comment on the effectiveness of the most common solutions. We will then give some examples of current development on texture-based techniques, and given practical examples of their use in CFD research and hydrodynamic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial expression recognition (FER) algorithms mainly focus on classification into a small discrete set of emotions or representation of emotions using facial action units (AUs). Dimensional representation of emotions as continuous values in an arousal-valence space is relatively less investigated. It is not fully known whether fusion of geometric and texture features will result in better dimensional representation of spontaneous emotions. Moreover, the performance of many previously proposed approaches to dimensional representation has not been evaluated thoroughly on publicly available databases. To address these limitations, this paper presents an evaluation framework for dimensional representation of spontaneous facial expressions using texture and geometric features. SIFT, Gabor and LBP features are extracted around facial fiducial points and fused with FAP distance features. The CFS algorithm is adopted for discriminative texture feature selection. Experimental results evaluated on the publicly accessible NVIE database demonstrate that fusion of texture and geometry does not lead to a much better performance than using texture alone, but does result in a significant performance improvement over geometry alone. LBP features perform the best when fused with geometric features. Distributions of arousal and valence for different emotions obtained via the feature extraction process are compared with those obtained from subjective ground truth values assigned by viewers. Predicted valence is found to have a more similar distribution to ground truth than arousal in terms of covariance or Bhattacharya distance, but it shows a greater distance between the means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Texture analysis and textural cues have been applied for image classification, segmentation and pattern recognition. Dominant texture descriptors include directionality, coarseness, line-likeness etc. In this dissertation a class of textures known as particulate textures are defined, which are predominantly coarse or blob-like. The set of features that characterise particulate textures are different from those that characterise classical textures. These features are micro-texture, macro-texture, size, shape and compaction. Classical texture analysis techniques do not adequately capture particulate texture features. This gap is identified and new methods for analysing particulate textures are proposed. The levels of complexity in particulate textures are also presented ranging from the simplest images where blob-like particles are easily isolated from their back- ground to the more complex images where the particles and the background are not easily separable or the particles are occluded. Simple particulate images can be analysed for particle shapes and sizes. Complex particulate texture images, on the other hand, often permit only the estimation of particle dimensions. Real life applications of particulate textures are reviewed, including applications to sedimentology, granulometry and road surface texture analysis. A new framework for computation of particulate shape is proposed. A granulometric approach for particle size estimation based on edge detection is developed which can be adapted to the gray level of the images by varying its parameters. This study binds visual texture analysis and road surface macrotexture in a theoretical framework, thus making it possible to apply monocular imaging techniques to road surface texture analysis. Results from the application of the developed algorithm to road surface macro-texture, are compared with results based on Fourier spectra, the auto- correlation function and wavelet decomposition, indicating the superior performance of the proposed technique. The influence of image acquisition conditions such as illumination and camera angle on the results was systematically analysed. Experimental data was collected from over 5km of road in Brisbane and the estimated coarseness along the road was compared with laser profilometer measurements. Coefficient of determination R2 exceeding 0.9 was obtained when correlating the proposed imaging technique with the state of the art Sensor Measured Texture Depth (SMTD) obtained using laser profilometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower energy and protein intakes are well documented in patients on texture modified diets. In acute hospital settings, the provision of appropriate texture modified foods to meet industry standards is essential for patient safety and nutrition outcomes. The texture modified menu at an acute private hospital was evaluated in accordance with their own nutritional standards (NS) and Australian National Standards (Dietitians Association of Australia and Speech Pathology Australia, 2007). The NS documents portion sizes and nutritional requirements for each menu. Texture B and C menus were analysed qualitatively and quantitatively over 9 days of a 6 day cyclic menu for breakfast (n=4), lunch (n=34) and dinner (n=34). Results indicated a lack of portion control, as specified by the NS, across all meals including breakfast (65–140%), soup (55–115%), meat (45–165%), vegetables (55–185%) and desserts (30–300%). Dilution factors and portion sizes influenced the protein and energy availability of Texture B & C menus. While the Texture B menu provided more energy, neither menu met the NS. Limited dessert options on the Texture C menu restricted the ability of this menu to meet protein NS. A lack of portion control and menu items incorrectly modified can compromise protein and energy intakes. Strategies to correct serving sizes and provision of alternate protein sources were recommended. Suggestions included cost-effectively increasing the variety of foods to assist protein and energy intake and the procurement of standardised equipment and visual aids to assist food preparation and presentation in accordance with texture modified guidelines and the NS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex flow datasets are often difficult to represent in detail using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows (i.e., complex dynamics and time-dependent). In this paper, we review two popular texture-based techniques and their application to flow datasets sourced from real research projects. The texture-based techniques investigated were Line Integral Convolution (LIC), and Image-Based Flow Visualisation (IBFV). We evaluated these techniques and in this paper report on their visualisation effectiveness (when compared with traditional techniques), their ease of implementation, and their computational overhead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed representations of complex flow datasets are often difficult to generate using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows. We review two popular texture based techniques and their application to flow datasets sourced from active research projects. The techniques investigated were Line integral convolution (LIC) [1], and Image based flow visualisation (IBFV) [18]. We evaluated these and report on their effectiveness from a visualisation perspective. We also report on their ease of implementation and computational overheads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the bulk formation of YBa2Cu3O7-x from the Y2BaCuO5 plus liquid regime reveals that phase formation occurs at appreciable rates below 950°C in air. This result has been observed for phase-pure YBa2Cu3O7-x starting material given two types of heat treatment: held at 1100°C and slow-cooled from 1030°C at 6°C/h or heat-treated isothermally. Differential thermal analysis, with a cooling rate of 10°C/min indicates that the degree of undercooling for the peritectic formation of YBa2Cu3O7-x is greater than 100°C. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Texture enhancement is an important component of image processing, with extensive application in science and engineering. The quality of medical images, quantified using the texture of the images, plays a significant role in the routine diagnosis performed by medical practitioners. Previously, image texture enhancement was performed using classical integral order differential mask operators. Recently, first order fractional differential operators were implemented to enhance images. Experiments conclude that the use of the fractional differential not only maintains the low frequency contour features in the smooth areas of the image, but also nonlinearly enhances edges and textures corresponding to high-frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we applied the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other fractional differential operators, our new algorithms provide higher signal to noise values, which leads to superior image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Videokeratoscopy images can be used for the non-invasive assessment of the tear film. In this work the applicability of an image processing technique, textural-analysis, for the assessment of the tear film in Placido disc images has been investigated. Methods In the presence of tear film thinning/break-up, the reflected pattern from the videokeratoscope is disturbed in the region of tear film disruption. Thus, the Placido pattern carries information about the stability of the underlying tear film. By characterizing the pattern regularity, the tear film quality can be inferred. In this paper, a textural features approach is used to process the Placido images. This method provides a set of texture features from which an estimate of the tear film quality can be obtained. The method is tested for the detection of dry eye in a retrospective dataset from 34 subjects (22-normal and 12-dry eye), with measurements taken under suppressed blinking conditions. Results To assess the capability of each texture-feature to discriminate dry eye from normal subjects, the receiver operating curve (ROC) was calculated and the area under the curve (AUC), specificity and sensitivity extracted. For the different features examined, the AUC value ranged from 0.77 to 0.82, while the sensitivity typically showed values above 0.9 and the specificity showed values around 0.6. Overall, the estimated ROCs indicate that the proposed technique provides good discrimination performance. Conclusions Texture analysis of videokeratoscopy images is applicable to study tear film anomalies in dry eye subjects. The proposed technique appears to have demonstrated its clinical relevance and utility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a texture recognition based method for segmenting kelp from images collected in highly dynamic shallow water environments by an Autonomous Underwater Vehicle (AUV). A particular challenge is image quality that is affected by uncontrolled lighting, reduced visibility, significantly varying perspective due to platform egomotion, and kelp sway from wave action. The kelp segmentation approach uses the Mahalanobis distance as a way to classify Haralick texture features from sub-regions within an image. The results illustrate the applicability of the method to classify kelp allowing construction of probability maps of kelp masses across a sequence of images.