939 resultados para TENSILE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The profiled steel roof and wall cladding systems in Australia are commonly made of very thin high tensile steels, and are crest-fixed with screw fasteners. A review of current literature and design standards indicated the need to improve the understanding of the behaviour of crest-fixed steel cladding systems under wind uplift/suction loading, in particular, the local failures. Therefore a detailed experimental study using a series of small scale tests and some two-span cladding tests was conducted to investigate the local pull-through and dimpling failures in the commonly used steel cladding systems. The applicability of the current design formulae for the pull-through strength of crest-fixed steel classing systems was investigated first. An improved design formula was then developed in terms of the thickness and ultimate tensile strenth of steel cladding material and diameter of screw head or washer. This paper presents the details of this investigation and its results. A review of current design and test methods is also included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, two families of asymptotic near-tip stress fields are constructed in an elastic-ideally plastic FCC single crystal under mode I plane strain conditions. A crack is taken to lie on the (010) plane and its front is aligned along the [(1) over bar 01] direction. Finite element analysis is first used to systematically examine the stress distributions corresponding to different constraint levels. The general framework developed by Rice (Mech Mater 6:317-335, 1987) and Drugan (J Mech Phys Solids 49:2155-2176, 2001) is then adopted to generate low triaxiality solutions by introducing an elastic sector near the crack tip. The two families of stress fields are parameterized by the normalized opening stress (tau(A)(22)/tau(o)) prevailing in the plastic sector in front of the tip and by the coordinates of a point where elastic unloading commences in stress space. It is found that the angular stress variations obtained from the analytical solutions show good agreement with finite element analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an experimental investigation carried out, using the photoelastic technique, to determine the Mode I stress intensity factor in case of cracks of varying a/w ratio in single edge-notch specimens. The photoelastic information was analysed using the several methods proposed by earlier workers. The experimental results are compared with the analytical expressions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel stress induced martenistic phase transformation is reported in an initial B2-CuZr nanowire of cross-sectional dimensions in the range of 19.44 x 19.44-38.88 x 38.88 angstrom(2) and temperature in the range of 10-400 K under both tensile and compressive loading. Extensive Molecular Dynamic simulations are performed using an inter-atomic potential of type Finnis and Sinclair. The nanowire shows a phase transformation from an initial B2 phase to BCT (body-centered-tetragonal) phase with failure strain of similar to 40% in tension, whereas in compression, comparatively a small B2 -> BCT phase transformation is observed with failure strain of similar to 25%. Size and temperature dependent deformation mechanisms which control ultimately the B2 -> BCT phase transformation are found to be completely different for tensile and compressive loadings. Under tensile loading, small cross-sectional nanowire shows a single step phase transformation, i.e. B2 -> BCT via twinning along {100} plane, whereas nanowires with larger cross-sectional area show a two step phase transformation, i.e. B2 -> R phase -> BCT along with intermediate hardening. In the first step, nanowire shows phase transformation from B2 -> R phase via twinning along {100} plane, afterwards the nanowire deforms via twinning along {110} plane which cause further transformation from R phase -> BCT phase. Under compressive loading, the nanowire shows crushing along {100} plane after a single step phase transformation from B2 -> BCT. Proper tailoring of such size and temperature dependent phase transformation can be useful in designing nanowire for high strength applications with corrosion and fatigue resistance. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical solution has been obtained for the state of stress in a rectangular plate under a pair of symmetrically placed rigid indenters. The stress distributions along the two central axes have been calculated for a square plate assuming the pressure distribution under the indenters as uniform, parabolic and one resulting from 'constant displacement' on a semiinfinite boundary, for different ratios of indenter-width to side of square. The results are compared with those of photoelastic analysis of Berenbaum and Brodie and the validity of the solution is discussed. The solution has been extended to orthotropic materials and numerical results for one type of coal are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The displacement between the ridges situated outside the filleted test section of an axially loaded unnotched specimen is computed from the axial load and shape of the specimen and compared with extensometer deflection data obtained from experiments. The effect of prestrain on the extensometer deflection versus specimen strain curve has been studied experimentally and analytically. An analytical study shows that an increase in the slope of the stress-strain curve in the inelastic region increases the slope of the corresponding computed extensometer deflection versus specimen strain curve. A mathematical model has been developed which uses a modified length ¯ℓef in place of the actual length of the uniform diameter test section of the specimen. This model predicts the extensometer deflection within 5% of the corresponding experimental value. This method has been successfully used by the authors to evolve an iterative procedure for predicting the cyclic specimen strain in axial fatigue tests on unnotched specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been suggested to accurately determine the DBTT of diffusion aluminide bond coats. Micro-tensile testing of free-standing coating samples has been carried out. The DBTT was determined based on the variation of plastic strain-to-fracture with temperature. The positive features of this method over the previously reported techniques are highlighted. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of crystallographic texture and the change in the grain size during warm rolling (300 deg K) and their effect on the tensile yield strength at 77 and 300 deg K are studied in 99.9% pure Cd. Both longitudinal and transverse specimens are tested. The yield strength obeys the Hall--Petch relation. The Hall--Petch slope, k, is lower and the intercept sigma o is higher in the warm worked material in comparison with the corresponding values for annealed Cd. The differences are attributed to the change in 1013 < and 0001 textures that are developed during warm rolling.26 refs.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a finite element analysis of steady-state dynamic crack growth under Mode I, plane strain, small-scale yielding conditions is performed in a rate dependent plastic material characterized by the over-stress model. The main objective of the paper is to obtain theoretically the dependence of dynamic fracture toughness on crack speed. Crack propagation due to a ductile (micro-void) mechanism or a brittle (cleavage) mechanism, as well as transition from one mode to another are considered. The conversion from ductile to brittle has been observed experimentally but has received very little attention using analytical methods. Local fracture criteria based on strains and stresses are used to describe ductile and brittle fracture mechanisms. The results obtained in this paper are in general agreement with micro-structural observations of mode conversion during fracture initiation. Finally, the particular roles played by material rate sensitivity and inertia are examined in some detail.