59 resultados para TCABR TOKAMAK
Resumo:
Each plasma physics laboratory has a proprietary scheme to control and data acquisition system. Usually, it is different from one laboratory to another. It means that each laboratory has its own way to control the experiment and retrieving data from the database. Fusion research relies to a great extent on international collaboration and this private system makes it difficult to follow the work remotely. The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The choice of MDSplus (Model Driven System plus) is proved by the fact that it is widely utilized, and the scientists from different institutions may use the same system in different experiments in different tokamaks without the need to know how each system treats its acquisition system and data analysis. Another important point is the fact that the MDSplus has a library system that allows communication between different types of language (JAVA, Fortran, C, C++, Python) and programs such as MATLAB, IDL, OCTAVE. In the case of tokamak TCABR interfaces (object of this paper) between the system already in use and MDSplus were developed, instead of using the MDSplus at all stages, from the control, and data acquisition to the data analysis. This was done in the way to preserve a complex system already in operation and otherwise it would take a long time to migrate. This implementation also allows add new components using the MDSplus fully at all stages. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Plasma edge turbulence in Tokamak Chauffage Alfven Bresilien (TCABR) [R. M. O. Galvao et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences. (C) 2008 American Institute of Physics.
Resumo:
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624551]
Resumo:
Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, Vlasov equation is solved for collisionless plasmas in drift approach and a perpendicular dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account plasma rotation and charge separation parallel electric field, it is found that an ion geodesic effect deform Alfveacuten wave continuum producing continuum minimum at the rational magnetic surfaces, which depends on the plasma rotation and poloidal mode numbers. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency also depends on electron temperature. A geodesic ion Alfveacuten mode predicted below the continuum minimum has a small Landau damping in plasmas with Maxwell distribution but the plasma rotation may drive instability.
Resumo:
The existence of a reversed magnetic shear in tokamaks improves the plasma confinement through the formation of internal transport barriers that reduce radial particle and heat transport. However, the transport poloidal profile is much influenced by the presence of chaotic magnetic field lines at the plasma edge caused by external perturbations. Contrary to many expectations, it has been observed that such a chaotic region does not uniformize heat and particle deposition on the inner tokamak wall. The deposition is characterized instead by structured patterns called magnetic footprints, here investigated for a nonmonotonic analytical plasma equilibrium perturbed by an ergodic limiter. The magnetic footprints appear due to the underlying mathematical skeleton of chaotic magnetic field lines determined by the manifold tangles. For the investigated edge safety factor ranges, these effects on the wall are associated with the field line stickiness and escape channels due to internal island chains near the flux surfaces. Comparisons between magnetic footprints and escape basins from different equilibrium and ergodic limiter characteristic parameters show that highly concentrated magnetic footprints can be avoided by properly choosing these parameters. (c) 2008 American Institute of Physics.
Resumo:
Alfven eigenmodes (AE) driven by ion cyclotron resonance heating are usually registered by different diagnostic channels in the hot core plasmas of large tokamaks like JET and ASDEX Upgrade. These AE appear very near to the extremum points of Alfven wave continuum, which is modified by the geodesic effect due to poloidal mode coupling. It is shown that the AE spectrum may be explored as the magnetic spectroscopy (like Alfven cascades by Sharapov et al 2001 Phys. Lett. A 289 127) to determine the q-factor minimum and geodesic frequency at the magnetic axis in standard sawtoothed discharges without reversed shear.
Resumo:
The electrostatic geodesic mode oscillations are investigated in rotating large aspect ratio tokamak plasmas with circular isothermal magnetic surfaces. The analysis is carried out within the magnetohydrodynamic model including heat flux to compensate for the non-adiabatic pressure distribution along the magnetic surfaces in plasmas with poloidal rotation. Instead of two standard geodesic modes, three geodesic continua are found. The two higher branches of the geodesic modes have a small frequency up-shift from ordinary geodesic acoustic and sonic modes due to rotation. The lower geodesic continuum is a newzonal flowmode (geodesic Doppler mode) in plasmas with mainly poloidal rotation. Limits to standard geodesic modes are found. Bifurcation of Alfven continuum by geodesic modes at the rational surfaces is also discussed. Due to that, the frequency of combined geodesic continuum extends from the poloidal rotation frequency to the ion-sound band that can have an important role in suppressing plasma turbulence.
Resumo:
The magnetic field line structure in a tokamak can be obtained by direct numerical integration of the field line equations. However, this is a lengthy procedure and the analysis of the solution may be very time-consuming. Otherwise we can use simple two-dimensional, area-preserving maps, obtained either by approximations of the magnetic field line equations, or from dynamical considerations. These maps can be quickly iterated, furnishing solutions that mirror the ones obtained from direct numerical integration, and which are useful when long-term studies of field line behavior are necessary (e.g. in diffusion calculations). In this work we focus on a set of simple tokamak maps for which these advantages are specially pronounced.
Resumo:
A self-consistent equilibrium calculation, valid for arbitrary aspect ratio tokamaks, is obtained through a direct variational technique that reduces the equilibrium solution, in general obtained from the 2D Grad-Shafranov equation, to a 1D problem in the radial flux coordinate rho. The plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schluter and the neoclassical ohmic and bootstrap currents. An iterative procedure is introduced into our code until the flux surface averaged toroidal current density (J(T)), converges to within a specified tolerance for a given pressure profile and prescribed boundary conditions. The convergence criterion is applied between the (J(T)) profile used to calculate the equilibrium through the variational procedure and the one that results from the equilibrium and given by the sum of all current components. The ohmic contribution is calculated from the neoclassical conductivity and from the self-consistently determined loop voltage in order to give the prescribed value of the total plasma current. The bootstrap current is estimated through the full matrix Hirshman-Sigmar model with the viscosity coefficients as proposed by Shaing, which are valid in all plasma collisionality regimes and arbitrary aspect ratios. The results of the self-consistent calculation are presented for the low aspect ratio tokamak Experimento Tokamak Esferico. A comparison among different models for the bootstrap current estimate is also performed and their possible Limitations to the self-consistent calculation is analysed.
Resumo:
Recently a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel.
Resumo:
Il presente elaborato è incentrato sulla modellizzazione del plasma di bordo nei dispositivi per la produzione di energia da fusione nucleare noti come tokamak. La tecnologia che nel corso di tutta la seconda metà del XX secolo fino ad oggi è stata sviluppata a questo fine deve necessariamente scontrarsi con alcuni limiti. Nei tokamak il confinamento del plasma è di tipo magnetico e vincola le particelle a muoversi di moto elicoidale all'interno del vessel, tuttavia il confinamento non risulta perfetto e parte dell'energia si scarica sulle pareti della camera, rischiando pertanto di fondere i materiali. Alcune strategie possono essere messe in atto per limitare questo problema, per esempio agendo sulla geometria del tokamak, oppure sulla fisica, inducendo nel plasma una data concentrazione di impurezze che ionizzino irraggiando parte dell'energia di plasma. Proprio tale meccanismo di perdita è stato simulato in un modello monodimensionale di plasma monofluido di bordo. I risultati del codice numerico relativo al modello dimostrano che per concentrazioni di impurezze crescenti è possibile diminuire in modo significativo flusso di calore e temperatura al divertore. Per di più risulta possibile controllare la posizione del fronte di irraggiamento per mezzo di parametri di controllo del plasma quali la pressione. Si osserva inoltre l'insorgere del cosiddetto fenomeno di biforcazione alle basse temperature di divertore, fenomeno in cui il plasma si comporta in modo instabile a causa di fenomeni fisici tipici delle basse energie ("detachment") e a seguito del quale può improvvisamente spegnersi (disruzione). Infine lo stesso modello è stato migliorato inserendo l'ipotesi di plasma bifluido. Anche per gli ioni viene osservato il fenomeno di biforcazione. I risultati numerici evidenziano le dinamiche dello scambio energetico fra le specie gettando le basi di una progettazione efficiente della chimica del plasma finalizzata al raffreddamento del divertore.
Resumo:
In questa tesi ho inizialmente esposto cenni teorici sulle reazioni di fusione nucleare e le motivazioni che hanno spinto la comunità scientifica verso la ricerca di questa nuova fonte energetica. Ho descritto il progetto ITER nei suoi obiettivi e nei principi di funzionamento di un reattore di tipo Tokamak e di tutti i componenti principali dell'intero impianto. In primo piano, mi sono focalizzato sul sistema di raffreddamento primario ad acqua del Tokamak (TCWS), con una prima panoramica sui suoi sottosistemi descrivendo i loro obiettivi, quali asportazione di calore e sicurezza dell'impianto. Successivamente ho analizzato nello specifico i particolari tecnici dei principali sottosistemi quali i vari circuiti di asportazione primaria del calore (PHTS Loops) dei diversi componenti del Tokamak, il Vacuum Vessel, il First Wall Blanket, il Divertor e il Neutral Beam Injector; ho esaminato i processi di controllo della qualità e del volume del fluido refrigerante nei circuiti (CVCS); ed infine le funzioni e le caratteristiche dei sistemi di drenaggio e di riempimento dei circuiti con i propri serbatoi ordinari e di sicurezza, e del sistema di asciugatura del fluido refrigerante con le sue diverse modalità operative.
Resumo:
"August, 1976."
Resumo:
"UCID-20154"--Cover.
Resumo:
"Prepared for the U.S. Energy Research and Development Administration under Contract W-31-109-Eng-38"--Cover.