994 resultados para Symbolic Data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the impact of price consciousness, perceived risk, and ethical obligation on attitude and intention towards counterfeit products. Data were collected from a sample of 200 respondents via an online questionnaire. A conceptual model was derived and tested via structural equation modelling in the contexts of symbolic and experiential counterfeit products. Findings show differences in the factors (and weight thereof) impacting attitude and purchase intention in the two product contexts. Specifically, ethical obligation and perceived risk are found to be significant predictors of attitude towards both symbolic and counterfeit products, while price consciousness is found to predict only attitude towards experiential products, but not purchase intention in either counterfeit product context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study explores the influence of the independent and interdependent self-construals on actual purchase behavior and the mediating role of consumer preferences for symbolic and hedonic meanings. Data were collected through a survey of about 1,000 respondents. Results indicate that independent consumers draw on the self/hedonic- and status-symbolic resources of clothing in the construction and expression of their identities. Regarding the interdependent consumers, they show no interest in clothing affiliation and status symbolism. The degree of preference for status-symbolic meaning mediates all effects of the independent and interdependent self-construals on actual purchase behavior; self-expressive/hedonic preferences mediate two of the three effects of the independent self on actual purchase behavior when accounting for suppression effects, whereas the expected mediation of preference for affiliation meaning is not supported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic word-of-mouth (eWOM) is recognised as a means of interpersonal communication and a powerful marketing tool. However, previous studies have focussed on related motivations, and limited attention has been given to understanding the antecedents of eWOM communication behaviour in the travel industry. This study proposes a full and partial mediation model, which brings together for the first time three key antecedents: adoption of electronic communication technology, consumer dis/satisfaction with travel consumption experience, and subjective norm. The model aims to understand the impact of these antecedents on travellers' attitude towards eWOM communication and intention to use eWOM communication media. The data were collected from international travellers (n = 524), and structural equation modelling is used to test the conceptual framework. The findings of the study suggest that overall attitude towards eWOM communication partially mediates the impact of the traveller's adoption of electronic communication technology and subjective norm, and fully mediates the impact of consumer dis/satisfaction with travel consumption experience on travellers' intention to use eWOM communication media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Online geographic-databases have been growing increasingly as they have become a crucial source of information for both social networks and safety-critical systems. Since the quality of such applications is largely related to the richness and completeness of their data, it becomes imperative to develop adaptable and persistent storage systems, able to make use of several sources of information as well as enabling the fastest possible response from them. This work will create a shared and extensible geographic model, able to retrieve and store information from the major spatial sources available. A geographic-based system also has very high requirements in terms of scalability, computational power and domain complexity, causing several difficulties for a traditional relational database as the number of results increases. NoSQL systems provide valuable advantages for this scenario, in particular graph databases which are capable of modeling vast amounts of inter-connected data while providing a very substantial increase of performance for several spatial requests, such as finding shortestpath routes and performing relationship lookups with high concurrency. In this work, we will analyze the current state of geographic information systems and develop a unified geographic model, named GeoPlace Explorer (GE). GE is able to import and store spatial data from several online sources at a symbolic level in both a relational and a graph databases, where several stress tests were performed in order to find the advantages and disadvantages of each database paradigm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper introduces a new model of fuzzy neuron, one which increases the computational power of the artificial neuron, turning it also into a symbolic processing device. This model proposes the synapsis to be symbolically and numerically defined, by means of the assignment of tokens to the presynaptic and postsynaptic neurons. The matching or concatenation compatibility between these tokens is used to decided about the possible connections among neurons of a given net. The strength of the compatible synapsis is made dependent on the amount of the available presynaptic and post synaptic tokens. The symbolic and numeric processing capacity of the new fuzzy neuron is used here to build a neural net (JARGON) to disclose the existing knowledge in natural language data bases such as medical files, set of interviews, and reports about engineering operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiotocography (CTG) is a widespread foetal diagnostic methods. However, it lacks of objectivity and reproducibility since its dependence on observer's expertise. To overcome these limitations, more objective methods for CTG interpretation have been proposed. In particular, many developed techniques aim to assess the foetal heart rate variability (FHRV). Among them, some methodologies from nonlinear systems theory have been applied to the study of FHRV. All the techniques have proved to be helpful in specific cases. Nevertheless, none of them is more reliable than the others. Therefore, an in-depth study is necessary. The aim of this work is to deepen the FHRV analysis through the Symbolic Dynamics Analysis (SDA), a nonlinear technique already successfully employed for HRV analysis. Thanks to its simplicity of interpretation, it could be a useful tool for clinicians. We performed a literature study involving about 200 references on HRV and FHRV analysis; approximately 100 works were focused on non-linear techniques. Then, in order to compare linear and non-linear methods, we carried out a multiparametric study. 580 antepartum recordings of healthy fetuses were examined. Signals were processed using an updated software for CTG analysis and a new developed software for generating simulated CTG traces. Finally, statistical tests and regression analyses were carried out for estimating relationships among extracted indexes and other clinical information. Results confirm that none of the employed techniques is more reliable than the others. Moreover, in agreement with the literature, each analysis should take into account two relevant parameters, the foetal status and the week of gestation. Regarding the SDA, results show its promising capabilities in FHRV analysis. It allows recognizing foetal status, gestation week and global variability of FHR signals, even better than other methods. Nevertheless, further studies, which should involve even pathological cases, are necessary to establish its reliability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract This paper presents a new method to extract knowledge from existing data sets, that is, to extract symbolic rules using the weights of an Artificial Neural Network. The method has been applied to a neural network with special architecture named Enhanced Neural Network (ENN). This architecture improves the results that have been obtained with multilayer perceptron (MLP). The relationship among the knowledge stored in the weights, the performance of the network and the new implemented algorithm to acquire rules from the weights is explained. The method itself gives a model to follow in the knowledge acquisition with ENN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the use of non-symbolic fragmentation of data for securing communications. Non-symbolic fragmentation, or NSF, relies on breaking up data into non-symbolic fragments, which are (usually irregularly-sized) chunks whose boundaries do not necessarily coincide with the boundaries of the symbols making up the data. For example, ASCII data is broken up into fragments which may include 8-bit fragments but also include many other sized fragments. Fragments are then separated with a form of path diversity. The secrecy of the transmission relies on the secrecy of one or more of a number of things: the ordering of the fragments, the sizes of the fragments, and the use of path diversity. Once NSF is in place, it can help secure many forms of communication, and is useful for exchanging sensitive information, and for commercial transactions. A sample implementation is described with an evaluation of the technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Language provides an interesting lens to look at state-building processes because of its cross-cutting nature. For example, in addition to its symbolic value and appeal, a national language has other roles in the process, including: (a) becoming the primary medium of communication which permits the nation to function efficiently in its political and economic life, (b) promoting social cohesion, allowing the nation to develop a common culture, and (c) forming a primordial basis for self-determination. Moreover, because of its cross-cutting nature, language interventions are rarely isolated activities. Languages are adopted by speakers, taking root in and spreading between communities because they are legitimated by legislation, and then reproduced through institutions like the education and military systems. Pádraig Ó’ Riagáin (1997) makes a case for this observing that “Language policy is formulated, implemented, and accomplishes its results within a complex interrelated set of economic, social, and political processes which include, inter alia, the operation of other non-language state policies” (p. 45). In the Turkish case, its foundational role in the formation of the Turkish nation-state but its linkages to human rights issues raises interesting issues about how socio-cultural practices become reproduced through institutional infrastructure formation. This dissertation is a country-level case study looking at Turkey’s nation-state building process through the lens of its language and education policy development processes with a focus on the early years of the Republic between 1927 and 1970. This project examines how different groups self-identified or were self-identified (as the case may be) in official Turkish statistical publications (e.g., the Turkish annual statistical yearbooks and the population censuses) during that time period when language and ethnicity data was made publicly available. The overarching questions this dissertation explores include: 1.What were the geo-political conditions surrounding the development and influencing the Turkish government’s language and education policies? 2.Are there any observable patterns in the geo-spatial distribution of language, literacy, and education participation rates over time? In what ways, are these traditionally linked variables (language, literacy, education participation) problematic? 3.What do changes in population identifiers, e.g., language and ethnicity, suggest about the government’s approach towards nation-state building through the construction of a civic Turkish identity and institution building? Archival secondary source data was digitized, aggregated by categories relevant to this project at national and provincial levels and over the course of time (primarily between 1927 and 2000). The data was then re-aggregated into values that could be longitudinally compared and then layered on aspatial administrative maps. This dissertation contributes to existing body of social policy literature by taking an interdisciplinary approach in looking at the larger socio-economic contexts in which language and education policies are produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there has been exponential growth in using virtual spaces, including dialogue systems, that handle personal information. The concept of personal privacy in the literature is discussed and controversial, whereas, in the technological field, it directly influences the degree of reliability perceived in the information system (privacy ‘as trust’). This work aims to protect the right to privacy on personal data (GDPR, 2018) and avoid the loss of sensitive content by exploring sensitive information detection (SID) task. It is grounded on the following research questions: (RQ1) What does sensitive data mean? How to define a personal sensitive information domain? (RQ2) How to create a state-of-the-art model for SID?(RQ3) How to evaluate the model? RQ1 theoretically investigates the concepts of privacy and the ontological state-of-the-art representation of personal information. The Data Privacy Vocabulary (DPV) is the taxonomic resource taken as an authoritative reference for the definition of the knowledge domain. Concerning RQ2, we investigate two approaches to classify sensitive data: the first - bottom-up - explores automatic learning methods based on transformer networks, the second - top-down - proposes logical-symbolic methods with the construction of privaframe, a knowledge graph of compositional frames representing personal data categories. Both approaches are tested. For the evaluation - RQ3 – we create SPeDaC, a sentence-level labeled resource. This can be used as a benchmark or training in the SID task, filling the gap of a shared resource in this field. If the approach based on artificial neural networks confirms the validity of the direction adopted in the most recent studies on SID, the logical-symbolic approach emerges as the preferred way for the classification of fine-grained personal data categories, thanks to the semantic-grounded tailor modeling it allows. At the same time, the results highlight the strong potential of hybrid architectures in solving automatic tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My doctoral research is about the modelling of symbolism in the cultural heritage domain, and on connecting artworks based on their symbolism through knowledge extraction and representation techniques. In particular, I participated in the design of two ontologies: one models the relationships between a symbol, its symbolic meaning, and the cultural context in which the symbol symbolizes the symbolic meaning; the second models artistic interpretations of a cultural heritage object from an iconographic and iconological (thus also symbolic) perspective. I also converted several sources of unstructured data, a dictionary of symbols and an encyclopaedia of symbolism, and semi-structured data, DBpedia and WordNet, to create HyperReal, the first knowledge graph dedicated to conventional cultural symbolism. By making use of HyperReal's content, I showed how linked open data about cultural symbolism could be utilized to initiate a series of quantitative studies that analyse (i) similarities between cultural contexts based on their symbologies, (ii) broad symbolic associations, (iii) specific case studies of symbolism such as the relationship between symbols, their colours, and their symbolic meanings. Moreover, I developed a system that can infer symbolic, cultural context-dependent interpretations from artworks according to what they depict, envisioning potential use cases for museum curation. I have then re-engineered the iconographic and iconological statements of Wikidata, a widely used general-domain knowledge base, creating ICONdata: an iconographic and iconological knowledge graph. ICONdata was then enriched with automatic symbolic interpretations. Subsequently, I demonstrated the significance of enhancing artwork information through alignment with linked open data related to symbolism, resulting in the discovery of novel connections between artworks. Finally, I contributed to the creation of a software application. This application leverages established connections, allowing users to investigate the symbolic expression of a concept across different cultural contexts through the generation of a three-dimensional exhibition of artefacts symbolising the chosen concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.