977 resultados para Surveys - stars: low-mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the optical spectroscopy of the eclipsing halo low-mass X-ray binary 2S 0921-630, which reveals the absorption-line radial velocity curve of the K0 III secondary star with a semiamplitude K-2=92.89+/-3.84 km s(-1), a systemic velocity gamma=34.9+/-3.3 km s(-1), and an orbital period P-orb of 9.0035+/-0.0029 days (1 sigma). Given the quality of the data, we find no evidence for the effects of X-ray irradiation. Using the previously determined rotational broadening of the mass donor and applying conservative limits on the orbital inclination, we constrain the compact object mass to be 2.0-4.3 M-circle dot (1 sigma), ruling out a canonical neutron star at the 99% level. Since the nature of the compact object is unclear, this mass range implies that the compact object is either a low-mass black hole with a mass slightly higher than the maximum possible neutron star mass (2.9 M-circle dot) or a massive neutron star. If the compact object is a black hole, it confirms the prediction of the existence of low-mass black holes, while if the object is a massive neutron star, its high mass severely constrains the equation of state of nuclear matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermonuclear explosions may arise in binary star systems in which a carbon-oxygen (CO) white dwarf (WD) accretes helium-rich material from a companion star. If the accretion rate allows a sufficiently large mass of helium to accumulate prior to ignition of nuclear burning, the helium surface layer may detonate, giving rise to an astrophysical transient. Detonation of the accreted helium layer generates shock waves that propagate into the underlying CO WD. This might directly ignite a detonation of the CO WD at its surface (an edge-lit secondary detonation) or compress the core of the WD sufficiently to trigger a CO detonation near the centre. If either of these ignition mechanisms works, the two detonations (helium and CO) can then release sufficient energy to completely unbind the WD. These 'double-detonation' scenarios for thermonuclear explosion of WDs have previously been investigated as a potential channel for the production of Type Ia supernovae from WDs of ~ 1 M . Here we extend our 2D studies of the double-detonation model to significantly less massive CO WDs, the explosion of which could produce fainter, more rapidly evolving transients. We investigate the feasibility of triggering a secondary core detonation by shock convergence in low-mass CO WDs and the observable consequences of such a detonation. Our results suggest that core detonation is probable, even for the lowest CO core masses that are likely to be realized in nature. To quantify the observable signatures of core detonation, we compute spectra and light curves for models in which either an edge-lit or compression-triggered CO detonation is assumed to occur. We compare these to synthetic observables for models in which no CO detonation was allowed to occur. If significant shock compression of the CO WD occurs prior to detonation, explosion of the CO WD can produce a sufficiently large mass of radioactive iron-group nuclei to significantly affect the light curves. In particular, this can lead to relatively slow post-maximum decline. If the secondary detonation is edge-lit, however, the CO WD explosion primarily yields intermediate-mass elements that affect the observables more subtly. In this case, near-infrared observations and detailed spectroscopic analysis would be needed to determine whether a core detonation occurred. We comment on the implications of our results for understanding peculiar astrophysical transients including SN 2002bj, SN 2010X and SN 2005E. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysisof Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and iscomposed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolvedand metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1+5.1−4.7 M⊕, radius Rp = 5.77+0.85−0.79 R⊕, and density ρp = 1.45+0.83 −0.48 g cm−3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements makeup a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25+0.19−0.17 R⊕, which implies theabsence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp < 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 − containing aclose-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow the previously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliability of millimeter and sub-millimeter wave radiometer measurements is dependent on the accuracy of the loads they employ as calibration targets. In the recent past on-board calibration loads have been developed for a variety of satellite remote sensing instruments. Unfortunately some of these have suffered from calibration inaccuracies which had poor thermal performance of the calibration target as the root cause. Stringent performance parameters of the calibration target such as low reflectivity, high temperature uniformity, low mass and low power consumption combined with low volumetric requirements remain a challenge for the space instrument developer. In this paper we present a novel multi-layer absorber concept for a calibration load which offers an excellent compromise between very good radiometric performance and temperature uniformity and the mass and volumetric constraints required by space-borne calibration targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The differential cross section for the process Z/√ → ℓℓ (ℓ = e, μ) as a function of dilepton invariant mass is measured in pp collisions at ps = 7TeV at the LHC using the ATLAS detector. The measurement is performed in the e and μ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb−1 collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb−1 of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leadingorder QCD calculations, unless the latter are matched to a parton shower calculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of seagrass and associated benthic communities on the reef and lagoon of Low Isles, Great Barrier Reef, was mapped between the 29 July and 29 August 1997. For this survey, observers walked or free-dived at survey points positioned approximately 50 m apart along a series of transects. Visual estimates of above-ground seagrass biomass and % cover of each benthos and substrate type were recorded at each survey point. A differential handheld global positioning system (GPS) was used to locate each survey point (accuracy ±3m). A total of 349 benthic survey points were examined. To assist with mapping meadow/habitat type boundaries, an additional 177 field points were assessed and a georeferenced 1:12,000 aerial photograph (26th August 1997) was used as a secondary source of information. Bathymetric data (elevation below Mean Sea Level) measured at each point assessed and from Ellison (1997) supplemented information used to determine boundaries, particularly in the subtidal lagoon. 127.8 ±29.6 hectares was mapped. Seagrass and associated benthic community data was derived by haphazardly placing 3 quadrats (0.25m**2) at each survey point. Seagrass above ground biomass (standing crop, grams dry weight (g DW m**-2)) was determined within each quadrat using a non-destructive visual estimates of biomass technique and the seagrass species present identified. In addition, the cover of all benthos was measured within each of the 3 quadrats using a systematic 5 point method. For each quadrat, frequency of occurrence for each benthic category was converted to a percentage of the total number of points (5 per quadrat). Data are presented as the average of the 3 quadrats at each point. Polygons of discrete seagrass meadow/habitat type boundaries were created using the on-screen digitising functions of ArcGIS (ESRI Inc.), differentiated on the basis of colour, texture, and the geomorphic and geographical context. The resulting seagrass and benthic cover data of each survey point and for each seagrass meadow/habitat type was linked to GPS coordinates, saved as an ArcMap point and polygon shapefile, respectively, and projected to Universal Transverse Mercator WGS84 Zone 55 South.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substellar-mass object in orbit at about 300 astronomical units from the young low-mass star G 196-3 was detected by direct imaging. Optical and infrared photometry and low- and intermediate-resolution spectroscopy of the faint companion, hereafter referred to as G 196-3B, confirm its cool atmosphere ?15 Jupiter masses. The separation and allow its mass to be estimated at 25?10 between the objects and their mass ratio suggest the fragmentation of a collapsing cloud as the most likely origin for G 196-3B, but alternatively it could have originated from a protoplanetary disc that has been dissipated. Whatever the formation process was, the young age of the primary star (about 100 million years) demonstrates that substellar companions can form on short time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-mass impact sensor for high-speed firmness sensing of fruits was built and tested. Results of tests with a rubber ball indicated that the impact measurement was not sensitive to the distance between the impactor and the impacting surface of the sample within the range of 8 to 23 mm, and was not sensitive to how the sample was held. Tests with kiwifruits and peaches show good correlation between firmness readings obtained with the impact sensor and those obtained with the penetrometer. The best correlation was between the slope of the impact curve (at mid-point) and the force-deformation firmness. Preliminary test showed that the sensor could sense fruit firmness at a speed of 5 fruits/s.