882 resultados para Super-conducting coils
Resumo:
As reported by Shipboard Scientific Party (2001b, doi:10.2973/odp.proc.ir.191.104.2001) in the Site 1179 chapter of the Initial Reports volume, Leg 191 Site 1179 is located on abyssal seafloor northwest of Shatsky Rise, ~1650 km east of Japan. This part of the Pacific plate was formed during the Early Cretaceous, as shown by northeast-trending M-series magnetic lineations that become younger toward the northwest (Larson and Chase, 1972, doi:10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2; Sager et al., 1988, doi:10.1029/JB093iB10p11753; Nakanishi et al., 1989, doi:10.1029/1999JB900002). The site is situated on magnetic Anomaly M8 (Nakanishi et al., 1999, doi:10.1029/1999JB900002), corresponding to an age of ~129 Ma and the Hauterivian stage of the Early Cretaceous (Gradstein et al., 1994, doi:10.1029/94JB01889; 1995). The sediments recovered at Site 1179 are split into four lithostratigraphic units based on composition and color (Shipboard Scientific Party, 2001b, doi:10.2973/odp.proc.ir.191.104.2001). Unit I (0-221.52 meters below seafloor [mbsf]) is a dominantly olive-gray clay- and radiolarian-bearing diatom ooze. Unit II (221.52-246.0 mbsf) is a yellowish brown to light brown clay-rich and diatom-bearing radiolarian ooze. Unit III (246.0-283.53 mbsf) is composed of brown pelagic clay. Unit IV (283.53-377.15 mbsf) is composed of chert and some porcellanite; any softer sediments present were washed out of the core barrel by the fluid circulating during the coring process.
Resumo:
SINNMR (Sonically Induced Narrowing of the Nuclear Magnetic Resonance spectra of solids), is a novel technique that is being developed to enable the routine study of solids by nuclear magnetic resonance spectroscopy. SINNMR aims to narrow the broad resonances that are characteristic of solid state NMR by inducing rapid incoherent motion of solid particles suspended in a support medium, using high frequency ultrasound in the range 2-10 MHz. The width of the normal broad resonances from solids are due to incomplete averaging of several components of the total spin Hamiltonian caused by restrictions placed on molecular motion within a solid. At present Magic Angle Spinning (MAS) NMR is the classical solid state technique used to reduce line broadening, but: this has associated problems, not least of which is the appearance of many spinning side bands which confuse the spectra. It is hoped that SlNNMR will offer a simple alternative, particularly as it does not reveal spinning sidebands The fundamental question concerning whether the use of ultrasound within a cryo-magnet will cause quenching has been investigated with success, as even under the most extreme conditions of power, frequency and irradiator time, the magnet does not quench. The objective of this work is to design and construct a SINNMR probe for use in a super conducting cryo-magnet NMR spectrometer. A cell for such a probe has been constructed and incorporated into an adapted high resolution broadband probe. It has been proved that the cell is capable of causing cavitation, up to 10 MHz, by running a series of ultrasonic reactions within it and observing the reaction products. It was found that the ultrasound was causing the sample to be heated to unacceptable temperatures and this necessitated the incorporation of temperature stabilisation devices. Work has been performed on the investigation of the narrowing of the solid state 23Na spectrum of tri-sodium phosphate using high frequency ultrasound. Work has also been completed on the signal enhancement and T1 reduction of a liquid mixture and a pure compound using ultrasound. Some preliminary "bench" experiments have been completed on a novel ultrasonic device designed to help minimise sample heating. The concept involves passing the ultrasound through a temperature stabilised, liquid filled funnel that has a drum skin on the end that will enable the passage of ultrasound into the sample. Bench experiments have proved that acoustic attenuation is low and that cavitation in the liquid beyond the device is still possible.
Resumo:
A method is presented for calculating the currents and winding patterns required to design independent zonal and tesseral shim coils for magnetic resonance imaging. Both actively shielded and unshielded configurations are considered, and the region of interest can be located asymmetrically with respect to the coil's length. Streamline, target-field and Fourier-series methods are utilized. The desired target-field is specified at two cylindrical radii, on and inside a circular conducting cylinder of length 2L and radius a. The specification is over some asymmetric portion pL < z < qL of the coil's length (-1 < p < q < 1). Arbitrary functions are used in the outer sections, -L < z < pL and qL < z < L, to ensure continuity of the magnetic field across the entire length of the coil. The entire field is then periodically extended as a half-range cosine Fourier series about either end of the coil. The resultant Fourier coefficients are then substituted into the Fourier-series expressions for the internal and external magnetic fields, and current densities and stream functions on both the primary coil and shield. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis and shielding analysis on field calculations from a ZX shim coil indicate that example designs and theory are well matched.
Resumo:
A method is presented for calculating the winding patterns required to design independent zonal and tesseral biplanar shim coils for magnetic resonance imaging. Streamline, target-field, Fourier integral and Fourier series methods are utilized. For both Fourier-based methods, the desired target field is specified on the surface of the conducting plates. For the Fourier series method it is possible to specify the target field at additional depths interior to the two conducting plates. The conducting plates are confined symmetrically in the xy plane with dimensions 2a x 2b, and are separated by 2d in the z direction. The specification of the target field is symmetric for the Fourier integral method, but can be over some asymmetric portion pa < x < qa and sb < y < tb of the coil dimensions (-1 < p < q < 1 and -1 < s < t < 1) for the Fourier series method. Arbitrary functions are used in the outer sections to ensure continuity of the magnetic field across the entire coil face. For the Fourier series case, the entire field is periodically extended as double half-range sine or cosine series. The resultant Fourier coefficients are substituted into the Fourier series and integral expressions for the internal and external magnetic fields, and stream functions on both the conducting surfaces. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis of field calculations from a ZX shim coil indicates that example designs and theory are well matched.
Resumo:
A solid state lithium metal battery based on a lithium garnet material was developed, constructed and tested. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a roll-to-roll technique conducive to high volume manufacturing. The high density and thin center layer (< 20 μm) effectively blocks dendrites even over hundreds of cycles. The microstructured porous layers, serving as electrode supports, are demonstrated to increase the interfacial surface area available to the electrodes and increase cathode loading. Reproducibility of flat, well sintered ceramics was achieved with consistent powderbed lattice parameter and ball milling of powderbed. Together, the resistance of the LLCZN trilayer was measured at an average of 7.6 ohm-cm2 in a symmetric lithium cell, significantly lower than any other reported literature results. Building on these results, a full cell with a lithium metal anode, LLCZN trilayer electrolyte, and LiCoO2 cathode was cycled 100 cycles without decay and an average ASR of 117 ohm-cm2. After cycling, the cell was held at open circuit for 24 hours without any voltage fade, demonstrating the absence of a dendrite or short-circuit of any type. Cost calculations guided the optimization of a trilayer structure predicted that resulting cells will be highly competitive in the marketplace as intrinsically safe lithium batteries with energy densities greater than 300 Wh/kg and 1000 Wh/L for under $100/kWh. Also in the pursuit of solid state batteries, an improved Na+ superionic conductor (NASICON) composition, Na3Zr2Si2PO12, was developed with a conductivity of 1.9x10-3 S/cm. New super-lithiated lithium garnet compositions, Li7.06La3Zr1.94Y0.06O12 and Li7.16La3Zr1.84Y0.16O12, were developed and studied revealing insights about the mechanisms of conductivity in lithium garnets.
Resumo:
Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.
Resumo:
Context. Star activity makes the mass determination of CoRoT-7b and CoRoT 7c uncertain. Investigators of the CoRoT team proposed several solutions, but all but one of them are larger than the initial determinations of 4.8 +/- 0.8 M(Earth) for CoRoT-7b and 8.4 +/- 0.9 M(Earth) for CoRoT 7c. Aims. This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to redetermine the planet masses and to explore techniques for determining mass and orbital elements of planets discovered around active stars when the relative variation in the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. Methods. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009, A&A, 506, 303) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) the approach proposed by Hatzes et al. (2010, A&A, 520, A93) using only those nights in which two or three observations were done; (2) a pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system. The periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2 454 847-873 are used because they include many nights with multiple observations; otherwise, it is not possible to separate the effects of the rotation fourth harmonic (5.91 d = P(rot)/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). Results. The results of the various approaches are combined to give planet mass values 8.0 +/- 1.2 M(Earth) for CoRoT-7b and 13.6 +/- 1.4 M(Earth) for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given. Conclusions. The results obtained with three different approaches agree to give higher masses than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 +/- 3.5 g cm(-3), so CoRoT-7b may be rocky with a large iron core.