1000 resultados para Super-bainitic steel


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two steels, ferritic, high strength with interphase precipitation and nano-bainitic, were used to show the advances in and application of atom probe. The coexistence of the nano-scale, interphase Nb-Mo-C clusters and stoichiometric MC nano particles was found in the high strength steel after thermomechanical processing. Moreover, the segregation of carbon at different heterogeneous sites such as grain boundary that reduces the solute element available for fine precipitation was observed. The APT study of the solutes redistribution between the retained austenite and bainitic ferrite in the nano-bainitic steel revealed: (i) the presence of two types of the retained austenite with higher and lower carbon content and (ii) segregation of carbon at the local defects such as dislocations in the bainitic ferrite during the isothermal hold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The manufacturing index of a country relies on the quality of manufacturing research outputs. Theemergence of new materials such as composites and multi component alloy has replaced traditionalmaterials in certain design application. Materials with properties like high strength to weight ratio,fatigue strength, wear resistance, thermal stability and damping capacity are a popular choice for adesign engineer. Contrary, the manufacturing engineer is novice to the science of machining thesematerials. This paper is an attempt to focus on the current trends in machinability research and anaddition to the existing information on machining. The paper consist of information on machiningAustempered Ductile Iron (ADI), Duplex Stainless Steel and Nano-Structured Bainitic Steel. Thevarious techniques used to judge the machinability of these materials is described in this paper.Studying the chip formation process in duplex steel using a quick stop device, metallographic analysisusing heat tinting of ADI and cutting force analysis of Nano-structured bainitic steel is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wettability and hydrophobicity of super-hydrophobic (SH) meshes is greatly influenced by their topographic structures, chemical composition and coating process. In this study, the properties of copper and stainless steel meshes, coated with super-hydrophobic electrolessly deposited silver were investigated. A new method to test the pressure resistance of super-hydrophobic mesh was applied to avoid any deformation of mesh. Results showed that SH copper mesh and SH stainless steel meshes with the same pore size have almost the same contact angle and the same hydrophobicity. SH copper mesh with a pore size of 122 μm can resist water pressure of 4900 Pa and a decrease of pore size of mesh can increase the pressure resistance of SH copper mesh. The SH copper mesh modified with 0.1 M HS(CH2)10COOH solution in ethanol has a controllable water permeation property by simply adjusting the pH of water solution. SH copper mesh shows super-oleophilicity with organic solvents and so with a water contact angle of 0° and it can be an effective tool for organic solvents/water separation. The separation efficiency of SH copper mesh for separating mixtures of organic solvent and water can be as high as 99.8%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stainless steel is the most widely used alloys of steel. The reputed variety of stainless steel having customised material properties as per the design requirements is Duplex Stainless Steel and Austenitic Stainless Steel. The Austenite Stainless Steel alloy has been developed further to be Super Austenitic Stainless Steel (SASS) by increasing the percentage of the alloying elements to form the half or more than the half of the material composition. SASS (Grade-AL-6XN) is an alloy steel containing high percentages of nickel (24%), molybdenum (6%) and chromium (21%). The chemical elements offer high degrees of corrosion resistance, toughness and stability in a large range of hostile environments like petroleum, marine and food processing industries. SASS is often used as a commercially viable substitute to high cost non-ferrous or non-metallic metals. The ability to machine steel effectively and efficiently is of utmost importance in the current competitive market. This paper is an attempt to evaluate the machinability of SASS which has been a classified material so far with very limited research conducted on it. Understanding the machinability of this alloy would assist in the effective forming of this material by metal cutting. The novelty of research associated with this is paper is reasonable taking into consideration the unknowns involved in machining SASS. The experimental design consists of conducting eight milling trials at combination of two different feed rates, 0.1 and 0.15 mm/tooth; cutting speeds, 100 and 150 m/min; Depth of Cut (DoC), 2 and 3 mm and coolant on for all the trials. The cutting tool has two inserts and therefore has two cutting edges. The trial sample is mounted on a dynamometer (type 9257B) to measure the cutting forces during the trials. The cutting force data obtained is later analyzed using DynaWare supplied by Kistler. The machined sample is subjected to surface roughness (Ra) measurement using a 3D optical surface profilometer (Alicona Infinite Focus). A comprehensive metallography process consisting of mounting, polishing and etching was conducted on a before and after machined sample in order to make a comparative analysis of the microstructural changes due to machining. The microstructural images were capture using a digital microscope. The microhardness test were conducted on a Vickers scale (Hv) using a Vickers microhardness tester. Initial bulk hardness testing conducted on the material show that the alloy is having a hardness of 83.4 HRb. This study expects an increase in hardness mostly due to work hardening may be due to phase transformation. The results obtained from the cutting trials are analyzed in order to judge the machinability of the material. Some of the criteria used for machinability evaluation are cutting force analysis, surface texture analysis, metallographic analysis and microhardness analysis. The methodology followed in each aspect of the investigation is similar to and inspired by similar research conducted on other materials. However, the novelty of this research is the investigation of various aspects of machinability and drawing comparisons between each other while attempting to justify each result obtained to the microstructural changes observed which influence the behaviour of the alloy. Due to the limited scope of the paper, machinability criteria such as chip morphology, Metal Removal Rate (MRR) and tool wear are not included in this paper. All aspects are then compared and the optimum machining parameters are justified with a scope for future investigations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cathodic and anodic characteristics of freshly polished and pre-reduced UNS S32550 (ASTM A479) super duplex stainless steel in a filtered and conductivity-adjusted seawater have been investigated under controlled flow conditions. A rotating cylinder electrode was used together with both steady and non-steady-state voltammetry and a potential step current transient technique to investigate the electrode reactions in the fully characterized electrolyte. Both oxygen reduction and hydrogen evolution were highly irreversible and the material exhibited excellent passivation and repassivation kinetics. Relative corrosion rates were derived and the corrosion mechanism of the alloy was found to be completely independent of the mass-transfer effects, which can contribute to flow-induced corrosion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inferior surface quality is a significant problem faced by machinist. The purpose of this study is to present a surface texture analysis undertaken as part of machinability assessment of Super Austenitic Stainless Steel alloy-AL6XN. The surface texture analysis includes measuring the surface roughness and investigating the microstructural behaviour of the machined surfaces. Eight milling trials were conducted using combination of cutting parameters under wet machining. An optical profilometer (non-contact), was used to evaluate the surface texture at three positions. The surface texture was represented using the parameter, average surface roughness. Scanning Electron Microscope was utilised to inspect the machined surface microstructure and co relate with the surface roughness results. Results showed that maximum roughness values recorded at the three positions in the longitudinal direction (perpendicular to the machining grooves) were 1.21 μm (trial 1), 1.63 μm (trial 6) and 1.68 μm (trial 7) respectively whereas the roughness values were greatly reduced in the lateral direction. Also, results showed that the feed rate parameter significantly influences the roughness values compared to the other cutting parameters. The microstructure of the machined surfaces was distorted by the existence of cracks, deformed edges and bands and wear deposition due to machining process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a study of tool wear and geometry response whenmachinability tests were applied under milling operations onthe Super Austenitic Stainless Steel alloy AL-6XN. Eight milling trials were executed under two cutting speeds, two feed rates, andtwo depths of cuts. Cutting edge profile measurements were performed to reveal response of cutting edge geometry to the cuttingparameters and wear. A scanning electron microscope (SEM) was used to inspect the cutting edges. Results showed the presenceof various types of wear such as adhesion wear and abrasion wear on the tool rake and flank faces. Adhesion wear represents theformation of the built-up edge, crater wear, and chipping, whereas abrasion wear represents flank wear.Thecommonly formed wearwas crater wear. Therefore, the optimum tool life among the executed cutting trails was identified according to minimum lengthand depth of the crater wear.The profile measurements showed the formation of new geometries for the worn cutting edges due toadhesion and abrasion wear and the cutting parameters.The formation of the built-up edge was observed on the rake face of thecutting tool. The microstructure of the built-up edge was investigated using SEM. The built-up edge was found to have the austeniteshear lamellar structure which is identical to the formed shear lamellae of the produced chip.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Who is Superman’s greatest threat? Evil genius Lex Luthor? General Zod from the Phantom Zone? The doppelganger Bizarro? Super-villain Brainiac? Kryptonite? Or is it intellectual property law?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been increasing interest on various properties and applications of electronically conducting polymers. Polyethylenedioxythiophene (PEDOT) is an interesting polymer of this type as it exhibits very high ionic conductivity. In the present study, PEDOT has been electrochemically deposited on stainless steel (SS) substrate for supercapacitor studies. PEDOT/SS electrodes prepared in 0.1M H2SO4 in presence of a surfactant, sodium dodecylsulphate (SDS), have been found to yield higher specific capacitance (SC) than the electrodes prepared from neutral aqueous electrolyte. The effects of concentration of H(2)SO4(,) concentration of SDS, potential of deposition, and nature of supporting electrolytes used for capacitor studies on SC of the PEDOT/SS electrodes have been studied. SC values as high as 250 F/g in 1M oxalic acid have been obtained during the initial stages of cycling. However, there is a rapid decrease in SC on repeated charge-discharge cycling. Spectroscopic data reflect structural changes in PEDOT on extended cycling. (C) 2007 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este estudo trata da representação do herói nas histórias em quadrinhos do Japão, os mangás, e dos Estados Unidos, os comics. Esta análise se propõe a comparar a figura do samurai, focada nos títulos Samurai X e Vagabond, e do super-herói, através de Superman e Batman. Para tal, utilizam-se duas minisséries norte-americanas de cada um dos títulos escolhidos publicadas entre o final da década de 1980 e a década de 1990, mesmo período dos quadrinhos japoneses. Os títulos escolhidos ilustram questões-chaves para o entendimento da figura do herói: seu surgimento, morte e confronto com antagonistas. Considerando o vasto material relacionado aos personagens norte-americanos, criados no final da década de 1930, optou-se por trabalhar com sagas específicas ao invés da obra como um todo, o que só foi possível no caso dos mangás. Por isso, essa análise se baseará nas histórias em quadrinhos publicadas a partir do final da década de 1980, preservando assim a paridade cronológica entre comics e mangás, os quais possuem uma cronologia mais rígida se comparada aos primeiros. Quanto aos segmentos escolhidos, no lado do Superman, farão parte dessa análise os arcos Man of Steel, de 1986, com a origem do personagem e A Morte e o Retorno do Superman, de 1992. Já em Batman serão analisadas as HQs Batman: Ano Um, de 1987 e Knightfall, de 1993.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, wedge-shape samples were used to study the effect of strain induced transformation on the formation of ultrafine grained structures in steel by single pass rolling. The results showed two different transition strains for bainite formation and ultrafine ferrite (UFF) formation in the surface layer of strip at reductions of 40% and 70%, respectively, in a plain carbon steel. The bainitic microstructure formed by strain induced bainitic transformation during single pass rolling was also very fine. The evolution of UFF formation in the surface layer showed that ferrite coarsening is significantly reduced through strain induced transformation combined with rapid cooling in comparison with the centre of the strip. In the surface, the ferrite coarsening mostly occurred for intragranular nucleated grains (IG) rather than grain boundary (GB) ferrite grains. The results suggest that normal grain growth occurred during overall transformation in the GB ferrite grains. In the centre of the strip, there was significantly more coarsening of ferrite grains nucleated on the prior austenite grain boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of additions of Nb, A1 and Mo to Fe-C-Mn-Si TRIP steels on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. Laboratory simulations of continuous cooling during TMP were performed using a quench deformation dilatometer, while laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. From this a comprehensive understanding of the structural and kinetic aspects of the bainite transformation in these types of TRIP steels has been developed. All samples were characterised using optical microscopy and XRD. The relationships between the morphology of bainitic structure, volume fraction, stability of RA and mechanical properties were investigated.