927 resultados para Sum rules
Resumo:
We calculate the form factors and the coupling constant in the rho D*D* vertex in the framework of QCD sum rules. We evaluate the three point correlation functions of the vertex considering both rho and D* mesons off-shell. The form factors obtained are very different but give the same coupling constant: g rho D*D* = 6.60 +/- 0.31. This number is 50% larger than what we would expect from SU(4) estimates. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The J/psipi --> (D) over barD*, D (D) over bar*, (D) over bar *D* and (D) over barD cross sections as a function of roots are evaluated in a QCD sum rule calculation. We study the Borel sum rule for the four point function involving pseudoscalar and vector meson currents, up to dimension four in the operator product expansion. We find that our results are smaller than the J/psipi --> charmed mesons cross sections obtained with models based on meson exchange, but are close to those obtained with quark exchange models. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The QCD Sum Rules have been used to evaluate the form factor in the vertex KK*pi. The method of QCD Sum Rules is based on the duality principle in which it is assumed that the hadrons can simultaneously be described in two levels: quarks and hadrons. This work showed that the, axial current, used to describe the meson K is not appropriated to study the form factor.
Resumo:
We consider the problem of a harmonic oscillator coupled to a scalar field in the framework of recently introduced dressed coordinates. We compute all the probabilities associated with the decay process of an excited level of the oscillator. Instead of doing direct quantum mechanical calculations we establish some sum rules from which we infer the probabilities associated to the different decay processes of the oscillator. Thus, the sum rules allows to show that the transition probabilities between excited levels follow a binomial distribution. (c) 2005 Published by Elsevier B.V.
Resumo:
Nonperturbative Wilson coefficients of the operator product expansion (OPE) for the spin-0 glueball correlators are derived and analyzed. A systematic treatment of the direct instanton contributions is given, based on a realistic instanton size distribution and renormalization at the operator scale. In the pseudoscalar channel, topological charge screening is identified as an additional source of (semi-) hard nonperturbative physics. The screening contributions are shown to be vital for consistency with the anomalous axial Ward identity, and previously encountered pathologies (positivity violations and the disappearance of the 0(-+) glueball signal) are traced to their neglect. on the basis of the extended OPE, a comprehensive quantitative analysis of eight Borel-moment sum rules in both spin-0 glueball channels is then performed. The nonperturbative OPE coefficients turn out to be indispensable for consistent sum rules and for their reconciliation with the underlying low-energy theorems. The topological short-distance physics strongly affects the sum rule results and reveals a rather diverse pattern of glueball properties. New predictions for the spin-0 glueball masses and decay constants and an estimate of the scalar glueball width are given, and several implications for glueball structure and experimental glueball searches are discussed.
Resumo:
We discuss several key problems of conventional QCD glueball sum rules in the spin-0 channels and show how they are overcome by nonperturbative Wilson coefficients. The nonperturbative contributions originate from direct instantons and, in the pseudoscalar channel, additionally from topological charge screening. The treatment of the direct-instanton sector is based on realistic instanton size distributions and renormalization at the operator scale. The resulting predictions for spin-0 glueball properties as well as their implications for experimental glueball searches are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We set up sum rules for heavy lambda decays in a full QCD calculation which in the heavy quark mass limit incorporates the symmetries of heavy quark effective theory. For the semileptonic Λc decay we obtain a reasonable agreement with experiment. For the Λb semileptonic decay we find at the zero recoil point a violation of the heavy quark symmetry of about 20%. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We use the QCD sum rules to study possible B-c-like molecular states. We consider isoscalar J(P) = 0(+) and J(P) = 1(+) D(*) B(*) molecular currents. We consider the contributions of condensates up to dimension eight and we work at leading order in alpha(s). We obtain for these states masses around 7 GeV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We use the QCD sum rules to study the recently observed charmonium-like structure Z+ c (3900) as a tetraquark state. We evaluate the three-point function and extract the coupling constants of the Z+ c J/ψ π+, Z+ c ηc ρ+ and Z+ c D+ ¯D∗0 vertices and the corresponding decay widths in these channels. The results obtained are in good agreement with the experimental data and supports to the tetraquark picture of this state.
Resumo:
We study, using the QCD sum rule framework, the possible existence of a charmed pentaquark that we call Θc(3250). In the QCD side we work at leading order in αs and consider condensates up to dimension 10. The mass obtained: mΘc = (3.21±0.13) GeV, is compatible with the mass of the structure seen by BaBar Collaboration in the decay channel B− →  ̄p Σ++ c π−π−.
Resumo:
We determine the mass of the bottom quark from high moments of the bbproduction cross section in e+e−annihilation, which are dominated by the threshold region. On the theory side next-to-next-to-next-to-leading order (NNNLO) calculations both for the resonances and the continuum cross section are used for the first time. We find mPSb(2GeV) =4.532+0.013−0.039GeVfor the potential-subtracted mass and mMSb(mMSb) =4.193+0.022−0.035GeVfor the MSbottom-quark mass.
Resumo:
We use the QCD sum rules to evaluate the mass of a possible scalar mesonic state that couples to a molecular D(s)*(D) over bar (s)* current. We find a mass m(Ds)*(Ds)* = (4.14 +/- 0.09) GeV, which is in an excellent agreement with the recently observed Y(4140) charmonium state. We consider the contributions of condensates up to dimension-eight, we work at leading order in alpha(s) and we keep terms which are linear in the strange quark mass m(s). We also consider a molecular D*(D) over bar* current and we obtain m m(D)*(D)* = (4.13 +/- 0.10), around 200 MeV above the mass of the Y(3930) charmonium state. We conclude that it is possible to describe the Y(4140) structure as a D(s)*(D) over bar (s)* molecular state or even as a mixture of D(s)*(D) over bar (s)* and D*(D) over bar* molecular states. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using the QCD sum rules we test if the charmonium-like structure Y(4274), observed in the J/psi phi invariant mass spectrum, can be described with a D(s)(D) over bar (s0)(2317)+ h.c. molecular current with J(PC) = 0(-+). We consider the contributions of condensates up to dimension ten and we work at leading order in alpha(s). We keep terms which are linear in the strange quark mass m(s). The mass obtained for such state is mD(s)D(s0) = (4.78 +/- 0.54) GeV. We also consider a molecular 0(-+) D (D) over bar (0)(2400)+ h.c. current and we obtain m(DD0) = (4.55 +/- 0.49) GeV. Our study shows that the newly observed Y(4274) in the J/psi phi invariant mass spectrum can be, considering the uncertainties, described using a molecular charmonium current. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The study of charmonium dissociation in heavy ion collisions is generally performed in the framework of effective Lagrangians with meson exchange. Some studies are also developed with the intention of calculate form factors and coupling constants related with charmed and light mesons. These quantifies are important in the evaluation of charmonium cross sections. In this Letter we present a calculation of the omega DD vertex that is a possible interaction vertex in some meson-exchange models spread in the literature. We used the standard method of QCD sum rules in order to obtain the vertex form factor as a function of the transferred momentum. Our results are compatible with the value of this vertex form factor (at zero momentum transfer) obtained in the vector-meson dominance model. (c) 2006 Elsevier B.V. All rights reserved.