1000 resultados para Sulu Sea
Resumo:
This paper presents the planktonic foraminifer biostratigraphy of the sites drilled during Ocean Drilling Program Leg 124 in the Celebes and Sulu Seas. It discusses preservation of foraminifers in pelagic sediments and in calcareous turbidites. In the Celebes Sea, pelagic carbonates are only found in the Eocene and Oligocene at Site 770. The faunas are poorly preserved due to severe dissolution and offer little biostratigraphic detail. In the Sulu Sea, pelagic carbonates are found in the upper Pliocene and Pleistocene at Sites 768 and 769 and throughout the recovered sequence at the shallower Site 771. The foraminifer faunas from these sediments allow for recognition of most standard zones. Variations in preservation of pelagic foraminifer faunas with time are due to changes in the depth of the lysocline. Shifts to improved preservation at Sites 768 and 769 are synchronous in the upper Pliocene/Pleistocene and may be related to global sea-level cycles. Planktonic foraminifers are also abundant in calcareous turbidites, which were deposited in both basins from the late Miocene onward. However, the turbidites are fine-grained, and biostratigraphic marker species are absent as a result of size-sorting during transport. In the Celebes Sea, shelf-derived material was a major component of early-late Miocene and middle Pliocene to early Pleistocene turbidites. Changes in the composition of the turbidites may correspond to global sea-level changes. In the Sulu Sea, a shift from shelf-derived material in Pliocene calcareous turbidites to a pelagic source in the Pleistocene may be related to subsidence of the Cagayan Ridge.
Resumo:
We present 30 new planktonic foraminiferal census data of surface sediment samples from the South China Sea, recovered between 630 and 2883 m water depth. These new data, together with the 131 earlier published data sets from the western Pacific, are used for calibrating the SIMMAX-28 transfer function to estimate past sea-surface temperatures. This regional SIMMAX method offers a slightly better understanding of the marginal sea conditions of the South China Sea than the linear transfer function FP-12E, which is based only on open-ocean data. However, both methods are biased toward the tropical temperature regime because of the very limited data from temperate to subpolar regions. The SIMMAX formula was applied to sediment core 17940 from the northeastern South China Sea, with sedimentation rates of 20-80 cm/ka. Results revealed nearly unchanged summer temperatures around 28°C for the last 30 ky, while winter temperatures varied between 19.5°C in the last glacial maximum and 26°C during the Holocene. During Termination 1A, the winter estimates show a Younger Dryas cooling by 3°C subsequent to a temperature optimum of 24°C during the Bölling=Alleröd. Estimates of winter temperature differences between 0 and 100 m water depth document the seasonal variations in the thickness of the mixed layer and provide a new proxy for estimating past changes in the strength of the winter monsoon.