948 resultados para Sulphur isotopes in terrestrial materials
Resumo:
Mollusk shells are often found in archeological sites, given their great preservation potential and high value as a multipurpose resource. They are often the only available material to use for radiocarbon dating, due to a lack of well-preserved bones in many archeological sites, especially for the key period of the Middle to Upper Paleolithic transition. However, radiocarbon dating on mollusk shells is often regarded as less reliable compared to bones, wood, or charcoals due to the various factors influencing their radiocarbon content (e.g., Isotope fractionation, marine reservoir effect etc.). For the development of more accurate chronologies using shells, it is fundamental to continue improving the precision of the techniques applied, as has been done for other materials (wood and bones). Thus, improving the chemical pretreatment on mollusk shells might allow researchers to obtain more reliable radiocarbon determinations allowing for the construction of new radiocarbon chronologies in archeological sites where so far it has not been possible. Furthermore, mollusk shells can provide information on the climatic and environmental variables present during their growth. Using shells for paleoclimatic reconstruction adds more evidence helpful for the interpretation of scenarios of human migration, adaptation, and behavior. Standard methods for both radiocarbon and stable isotope studies use the carbonate fraction of the shell. However, being biogenic structures, mollusk shells also consist of a minor organic fraction. The shell organic matrix has an important role in the formation of the calcium carbonate structure and is still not fully understood. This thesis explores the potential of using the shell organic matrix for radiocarbon dating and paleoenvironmental studies. The results of the work performed for this thesis represent a starting point for future research to build on, and further develop the approach and methodology proposed here.
Resumo:
The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro).
Resumo:
An analytical procedure based on microwave-assisted digestion with diluted acid and a double cloud point extraction is proposed for nickel determination in plant materials by flame atomic absorption spectrometry. Extraction in micellar medium was successfully applied for sample clean up, aiming to remove organic species containing phosphorous that caused spectral interferences by structured background attributed to the formation of PO species in the flame. Cloud point extraction of nickel complexes formed with 1,2-thiazolylazo-2-naphthol was explored for pre-concentration, with enrichment factor estimated as 30, detection limit of 5 mu g L(-1) (99.7% confidence level) and linear response up to 80 mu g L(-1). The accuracy of the procedure was evaluated by nickel determinations in reference materials and the results agreed with the certified values at the 95% confidence level.
Resumo:
Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm(-2). An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg(-1) B, 3.0 mg kg(-1) Cu, 3.6 mg kg(-1) Fe, 1.8 mg kg(-1) Mn and 1.2 mg kg(-1) Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental paragmeters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nanocomposite materials have received considerable attention in recent years due to their novel properties. Grain boundaries are considered to play an important role in nanostructured materials. This work focuses on the finite element analysis of the effect of grain boundaries on the overall mechanical properties of aluminium/alumina composites. A grain boundary is incorporated into the commonly used unit cell model to investigate its effect on material properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the ''effective'' plastic property of the grain boundary is estimated. In addition, the strengthening mechanism is also discussed based on the Estrin-Mecking model.
Resumo:
We present whole-rock and zircon rare earth element (REE) data from two early Archaean gneisses (3.81 Ga and 3.64 Ga) from the Itsaq gneiss complex, south-west Greenland. Both gneisses represent extremely rare examples of unaltered, fresh and relatively undeformed igneous rocks of such antiquity. Cathodoluminescence imaging of their zircons indicates a single crystallisation episode with no evidence for either later metamorphic and/or anatectic reworking or inheritance of earlier grains. Uniform, single-population U/Pb age data confirm the structural simplicity of these zircons. One sample, a 3.64 Ga granodioritic gneiss from the Gothabsfjord, yields a chondrite-normalised REE pattern with a positive slope from La to Lu as well as substantial positive Ce and slight negative Eu anomalies, features generally considered to be typical of igneous zircon. In contrast, the second sample, a 3.81 Ga tonalite from south of the Isua Greenstone Belt, has variable but generally much higher light REE abundances, with similar middle to heavy REE. Calculation of zircon/melt distribution coefficients (D-REE(zircon/melt)) from each sample yields markedly different values for the trivalent REE (i.e. Ce and Eu omitted) and simple application of one set of D-REE(zircon/melt) to model the melt composition for the other sample yields concentrations that are in error by up to two orders of magnitude for the light REE (La-Nd). The observed light REE overabundance in the 3.81 Ga tonalite is a commonly observed feature in terrestrial zircons for which a number of explanations ranging from lattice strain to disequilibrium crystallisation have been proposed and are further investigated herein. Regardless of the cause of light REE overabundance, our study shows that simple application of zircon/melt distribution coefficients is not an unambiguous method for ascertaining original melt composition. In this context, recent studies that use REE data to claim that > 4.3 Ga Hadean detrital zircons originally crystallised from an evolved magma, in turn suggesting the operation of geological processes in the early Earth analogous to those of the present day (e.g. subduction and melting of hydrated oceanic crust), must be regarded with caution. Indeed, comparison of terrestrial Hadean and > 3.9 Ga lunar highland zircons shows remarkable similarities in the light REE, even though subduction processes that have been used to explain the terrestrial zircons have never operated on the Moon. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuntz and Lavallee (2001) discuss the anomalous behaviour and propose a non-Darcian model as a more appropriate physical description. We present an alternative Darcian explanation and theory that retrieves the earlier advantages of the simple sorptivity test in providing parametric information about the material's hydraulic properties and allowing simple predictive formulae for the wetting profile to be generated.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Mecânica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Engenharia de Sistemas Ambientais
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
The employ of vegetal fibers for textiles and composites represents a great potential in economic and social sustainable development. Some Malvaceae species are considered tropical cosmopolitans, such as from Sida genus. Several species of this genus provide excellent textile bast fibers, which are very similar in qualities to the jute textile fiber. The objective of the present study is present the physicochemical characterization of six Brazilian vegetal fibers: Sida rhombifolia L.; Sida carpinifolia L. f.; Sidastrum paniculatum (L.) Fryxell; Sida cordifolia L.; Malvastrum coromandelianum (L.) Gurck; Wissadula subpeltata (Kuntze) R.E.Fries. Respectively the two first species are from Brazilian Atlantic Forest biome and the four remaining from Brazilian Cerrado biome, despite of present in other regions of the planet. The stems of these species were retted in water at 37oC for 20 days. The fibers were tested in order to determine tensile rupture strength, tenacity, elongation, Young’s modulus, cross microscopic structure, Scanning Electronic Microscopy (SEM), regain, combustion, acid, alkali, organic solvent and cellulase effects, pH of the aqueous extract, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The obtained values were compared with those from fibers of recognized applicability in the textile industry including hemp. The results are promising in terms of their employment in thermoset and thermoplastic medium resistance composites.
Resumo:
Polycrystal Plasticity, Yield-Vertex, Corner, Vertex-Effect, Microscale, Macroscale, Multiaxial, Torsional Buckling, Cruciform Column