914 resultados para Sugar addition
Resumo:
Methane (CH4) is an important greenhouse gas with a global warming potential (GWP) 25 times greater than carbon dioxide (CO2) that can be produced or consumed in soils depending on environmental conditions and other factors. Biochar application to soils has been shown to reduce CH4 emissions and to increase CH4 consumption. However, the effects of rice husk biochar (RB) have not been thoroughly investigated. Two 60-day laboratory incubation experiments were conducted to investigate the effects of amending two soil types with RB, raw mill mud (MM) and composted mill mud (CM) on soil CH4 consumption and emissions. Soil cores incubated in 1 L glass jars and gas samples were analysed for CH4 using gas chromatography. Average CH4 consumption rates varied from -0.06 to -0.68 g CH4-C( )/ha/d in sandy loam soil and -0.59 to -1.00 g CH4-C/ha/d in clay soil. Application of RB resulted in CH4 uptake of -0.52 to -0.55 g CH4-C/ha/d in sandy loam and -0.76 to -0.91 g CH4-C/ha/d in clay soil. Addition of MM showed low CH4 emissions or consumption at 60% water-filled pore space (WFPS) in both soils. However, at high water contents (>75% WFPS) the application of MM produced high rates of CH4 emissions which were significantly suppressed when RB was added. Cumulative emissions of the MM treatment produced 108.9 g CH4-C/ha at 75% WFPS and 11 459.3 g CH4-C/ha at 90% WFPS in sandy loam soil over a period of 60 days. RB can increase CH4 uptake under low soil water content (SWC) and decrease CH4 emissions under anaerobic conditions. CM expressed more potential to reduce CH4 emissions than those of MM.
Resumo:
There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films
Resumo:
Computer modelling has been used extensively in some processes in the sugar industry to achieve significant gains. This paper reviews the investigations carried out over approximately the last twenty five years,including the successes but also areas where problems and delays have been encountered. In that time the capability of both hardware and software have increased dramatically. For some processes such as cane cleaning, cane billet preparation, and sugar drying, the application of computer modelling towards improved equipment design and operation has been quite limited. A particular problem has been the large number of particles and particle interactions in these applications, which, if modelled individually, is computationally very intensive. Despite the problems, some attempts have already been made and knowledge gained on tackling these issues. Even if the detailed modelling is wanting, a model can provide some useful insights into the processes. Some options to attack these more intensive problems include the use of commercial software packages, which are usually very robust and allow the addition of user-supplied subroutines to adapt the software to particular problems. Suppliers of such software usually charge a fee per CPU licence, which is often problematic for large problems that require the use of many CPUs. Another option to consider is using open source software that has been developed with the capability to access large parallel resources. Such software has the added advantage of access to the full internal coding. This paper identifies and discusses the detail of software options with the potential capability to achieve improvements in the sugar industry.
Resumo:
As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC
Resumo:
We show that single walled carbon nanotubes (SWNTs) decorated with sugar functionalized poly (propyl ether imine) (PETIM) dendrimer is a very sensitive platform to quantitatively detect carbohydrate recognizing proteins, namely, lectins. The changes in electrical conductivity of SWNT in field effect transistor device due to carbohydrate-protein interactions form the basis of present study. The mannose sugar attached PETIM dendrimers undergo charge-transfer interactions with the SWNTs. The changes in the conductance of the dendritic sugar functionalized SWNT after addition of lectins in varying concentrations were found to follow the Langmuir type isotherm, giving the concanavalin A (Con A)-mannose affinity constant to be 8.5 x 10(6) M-1. The increase in the device conductance observed after adding 10 nM of Con A is same as after adding 20 mu M of a non-specific lectin peanut agglutinin, showing the high specificity of the Con A-mannose interactions. The specificity of sugar-lectin interactions was characterized further by observing significant shifts in Raman modes of the SWNTs. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4739793]
Resumo:
A Pummerer rearrangement of 2,3-dideoxy-3-alkyl/arylsulfinyl-arabino-hexopyranosides is reported. Treatment of sulfinyl-arabino-hexopyranoside derivatives, obtained through oxidation of the corresponding thio-derivatives, with trifluoroacetic anhydride (TFAA)/pyridine led to a facile formation of 2,3-dideoxy-3-alkyl/arylthio-hex-2-enopyranosides. Upon conversion of sugar vinyl sulfides to vinyl sulfoxides, conjugate addition reactions were conducted with alkoxides, to afford 3-deoxy-3-alkyl/arylsulfinyl pyranosides, in the manno-configuration exclusively. Whereas the conjugate addition reaction did not proceed with ether protecting groups, ester protecting groups and free hydroxyl groups in the sugar vinyl sulfoxide permitted the reaction. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
1. Recent changes in European agricultural policy have led to measures to reverse the loss of species-rich grasslands through the creation of new areas on ex-arable land. Ex-arable soils are often characterized by high inorganic nitrogen (N) levels, which lead to the rapid establishment of annual and fast-growing perennial species during the initial phase of habitat creation. The addition of carbon (C) to the soil has been suggested as a countermeasure to reduce plant-available N and alter competitive interactions among plant species. 2. To test the effect of C addition on habitat creation on ex-arable land, an experiment was set up on two recently abandoned fields in Switzerland and on two 6-year-old restoration sites in the UK. Carbon was added as a mixture of either sugar and sawdust or wood chips and sawdust during a period of 2 years. The effects of C addition on soil parameters and vegetation composition were assessed during the period of C additions and 1 year thereafter. 3. Soil nitrate concentrations were reduced at all sites within weeks of the first C addition, and remained low until cessation of the C additions. The overall effect of C addition on vegetation was a reduction in above-ground biomass and cover. At the Swiss sites, the addition of sugar and sawdust led to a relative increase in legume and forb cover and to a decrease in grass cover. The soil N availability, composition of soil micro-organisms and vegetation characteristics continued to be affected after cessation of C additions. 4. Synthesis and applications. The results suggest that C addition in grassland restoration is a useful management method to reduce N availability on ex-arable land. Carbon addition alters the vegetation composition by creating gaps in the vegetation that facilitates the establishment of late-seral plant species, and is most effective when started immediately after the abandonment of arable fields and applied over several years.
Resumo:
Rising greenhouse gas emissions (GHGEs) have implications for health and up to 30 % of emissions globally are thought to arise from agriculture. Synergies exist between diets low in GHGEs and health however some foods have the opposite relationship, such as sugar production being a relatively low source of GHGEs. In order to address this and to further characterise a healthy sustainable diet, we model the effect on UK non-communicable disease mortality and GHGEs of internalising the social cost of carbon into the price of food alongside a 20 % tax on sugar sweetened beverages (SSBs). Developing previously published work, we simulate four tax scenarios: (A) a GHGEs tax of £2.86/tonne of CO2 equivalents (tCO2e)/100 g product on all products with emissions greater than the mean across all food groups (0.36 kgCO2e/100 g); (B) scenario A but with subsidies on foods with emissions lower than 0.36 kgCO2e/100 g such that the effect is revenue neutral; (C) scenario A but with a 20 % sales tax on SSBs; (D) scenario B but with a 20 % sales tax on SSBs. An almost ideal demand system is used to estimate price elasticities and a comparative risk assessment model is used to estimate changes to non-communicable disease mortality. We estimate that scenario A would lead to 300 deaths delayed or averted, 18,900 ktCO2e fewer GHGEs, and £3.0 billion tax revenue; scenario B, 90 deaths delayed or averted and 17,100 ktCO2e fewer GHGEs; scenario C, 1,200 deaths delayed or averted, 18,500 ktCO2e fewer GHGEs, and £3.4 billion revenue; and scenario D, 2,000 deaths delayed or averted and 16,500 ktCO2e fewer GHGEs. Deaths averted are mainly due to increased fibre and reduced fat consumption; a SSB tax reduces SSB and sugar consumption. Incorporating the social cost of carbon into the price of food has the potential to improve health, reduce GHGEs, and raise revenue. The simple addition of a tax on SSBs can mitigate negative health consequences arising from sugar being low in GHGEs. Further conflicts remain, including increased consumption of unhealthy foods such as cakes and nutrients such as salt.
Resumo:
For proper management of wastes and their possible recycling as raw materials, complete characterization of the materials is necessary to evaluate the main scientific aspects and potential applications. The current paper presents a detailed scientific study of different Brazilian sugar cane bagasse ashes from the cogeneration industry as alternative cementing materials (active addition) for cement manufacture. The results show that the ashes from the industrial process (filter and bottom ones) present different chemical and mineralogical compositions and pozzolanic properties as well. As a consequence of its nature, the kinetic rate constant (K) states that the pozzolanic activity is null for the bottom ash and very low for the filter ash with respect to a sugar cane bagasse ash obtained in the laboratory under controlled burning conditions (reference). The scarce pozzolanic activity showed by ashes could be related to a possible contamination of bagasse wastes (with soils) before their use as alternative combustibles. For this reason, an optimization process for these wastes is advisable, if the ashes are to be used as pozzolans. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we investigated the enzymatic hydrolysis of pretreated sugarcane bagasse using eight different enzymatic blends obtained from concentrated crude enzyme extracts produced by Penicillium funiculosum and Trichoderma harzianum as well as from the extracts in combination with a commercial enzymatic cocktail. The influence of different levels of biomass delignification, degree of crystallinity of lignicellulose, composition of enzymatic activities and BSA on enzymatic hydrolysis yields (HYs) was evaluated. Our X-ray diffraction studies showed that crystallinity of lignocellulose is not a key determinant of its recalcitrance toward enzymatic hydrolysis. In fact, under the experimental conditions of our study, an increase in crystallinity of lignocellulosic samples resulted in increased glucose release by enzymatic hydrolysis. Furthermore, under the same conditions, the addition of BSA had no significant effect on enzymatic hydrolysis. The most efficient enzyme blends were obtained by mixing a commercial enzymatic cocktail with P. funiculosum or T. harzianum cellulase preparations (HYs above 97%) followed by the concentrated extract of P. funiculosum alone (HY= 88.5%). Increased hydrolytic efficiencies appeared to correlate with having an adequate level of both beta-glucosidase and xylanase activities in the blends. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
During sugar cane harvesting season, which occurs from May to November of each year, the crops are burnt, cut, and transported to the mills. There are reports showing that mutagenic activity and PAH content increase during harvesting season in some areas of Sao Paulo State in comparison with nonharvesting periods. The objective of this work was to preliminarily characterize the mutagenic activity of the total organic extracts as well as corresponding organic fractions of airborne particulate matter (PM) collected twice from two cities, Araraquara (ARQ) and Piracicaba (PRB), during sugar cane harvesting season using the Salmonella/microsome microssuspension assay. One sample collected in Sao Paulo metropolitan area was also included. The mutagenicity of the total extracts ranged from 55 to 320 revertants per cubic meter without the addition of S9 and from not detected to 57 revertants per cubic meter in the presence of S9 in areas with sugar cane plantations. Of the three fractions analyzed, the most polar ones (nitro and oxy) were the most potent. A comparison of the response of TA98 with YG1041 and the increased potencies without S9 indicated that nitro compounds are causing the observed effect. More studies are necessary to verify the sources of the mutagenic activity such as burning of vegetal biomass and combustion of heavy duty vehicles used to transport the sugar cane to the mills. The Salmonella/microsome assay can be an important tool to monitor the atmosphere for mutagenicity during sugar cane harvesting season.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated three fermented milk beverages to which had been added sugar strawberry puree post-fermentation. The base was composed of 70% of milk, with whey and buttermilk in the concentrations of 30% and 0%, 15% and 15%, and 0% and 30%, respectively. The starter culture developed well with all formulations reaching pH 4.74.9 in 180 min of fermentation. Lactic acid bacteria in the products were above 8 log cfu/mL throughout the study. The beverages presented similar pH, acidity and viscosity. Buttermilk and whey can be interesting ingredients to be added into fermented milk beverages, because the consumers liked all the products equally, which had an average acceptance score exceeding liked moderately.
Resumo:
Dietary carbohydrates provide an important source of energy for flight, and contribute to longevity and fecundity of mosquitoes. The most common sugar mosquitoes ingest is sucrose, and digestion of this substance is carried out mainly by alpha-glucosidases. In the current work, we tested the efficiency of sucrose on Anopheles aquasalis female diet. The best longevity (days) was reached when sugar was available in the diet, whereas most only blood fed females were dead 6 days after emergence. Three alpha-glucosidase isoforms were detected in the adult female midgut, named alpha Glu1, alpha Glu2 and alpha Glu3. These are acidic alpha-glucosidases with optima pH around pH 5.5. alpha Glu1 and alpha Glu2 are present in both secreted and membrane-bound forms, whereas alpha Glu3 only in anchored to membranes. The alpha-glucosidase activity is concentrated mainly in the posterior midgut (70%), both in non-fed or 10% sucrose fed females. The single form of these a-glucosidases seemed to be similar to 70 kDa polypeptides, although alpha Glu2 is presented in >= 600 kDa self-aggregates. K, values of alpha Glu1, alpha Glu2 and alpha Glu3 differed significantly from each other, supporting the statement that three alpha-glucosidases are produced in the female midgut. Together, all data suggest that sugar is an essential component of A. aquasalis female diet. In addition, alpha-glucosidases are synthesized in the same place where sucrose is digested and absorbed, the midgut. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In the present work, methylcellulose produced from sugar cane bagasse was characterized by FTIR, WAXD, DTA and TGA techniques. Two samples were synthesized: methylcellulose A and rnethylcellulose B. The only difference in the process was the addition of fresh reactants during the preparation of methylcellulose B. The ratio between the absorption intensities of the C-H stretching band at around 2900 cm(-1) and C-H stretching at around 3400 cm(-1) for methylcellulose B is higher than for methylcellulose A, indicating that methylcellulose B showed an increase in the degree of substitution (DS). Methylcellulose A presents a more heterogeneous structure, which is similar to the original cellulose as seen through FTIR and DTA. Methylcellulose B showed thermal properties similar to commercial methylcellulose. The modification of rnethylcellulose preparation method allows the production of a material with higher DS, crystallinity and thermal stability in relation to the original cellulose and to methylcellulose A. (c) 2006 Elsevier Ltd. All rights reserved.