965 resultados para Subtropical grasslands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genuine sustainability would require that urban development provide net positive social and ecological gains to compensate for previous lost natural capital and carrying capacity. Thus far, green buildings do not contribute to net sustainability. While they reduce relative resource consumption, they consume vast quantities of materials, energy and water.i Moreover, they replace land and ecosystems with structures that, at best, ‘mimic’ ecosystems. Elsewhere, the author has proposed a‘sustainability standard’, where development would leave the ecology, as well as society, better off after construction than before.ii To meet this standard, a development would need to add natural and social capital beyond what existed prior to development. Positive DesignTM or Positive DevelopmentTM is that which expands both the ecological base (life support system) and the public estate (equitable access to means of survival). How to achieve this is discussed in Positive Development (Birkeland 2008). This paper examines how net positive gains can be achieved in a ubtropical as well as temperate environment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subtropical Urban Communities Project Urban design and residential buildings The Centre for Subtropical Design has researched design concepts for livable subtropical neighbourhoods characterised by higher-density, mixed-use, family oriented housing by conducting a design charrette and analysing the proposed designs to evaluate how well these typologies might support economic, environmental and social sustainability. http://www.subtropicaldesign.org.au/index.php?option=com_content&task=view&id=125&Itemid=163 The QUT Team produced designs (Case Study 3) within the research framework of the design charrette.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat models are widely used in ecology, however there are relatively few studies of rare species, primarily because of a paucity of survey records and lack of robust means of assessing accuracy of modelled spatial predictions. We investigated the potential of compiled ecological data in developing habitat models for Macadamia integrifolia, a vulnerable mid-stratum tree endemic to lowland subtropical rainforests of southeast Queensland, Australia. We compared performance of two binomial models—Classification and Regression Trees (CART) and Generalised Additive Models (GAM)—with Maximum Entropy (MAXENT) models developed from (i) presence records and available absence data and (ii) developed using presence records and background data. The GAM model was the best performer across the range of evaluation measures employed, however all models were assessed as potentially useful for informing in situ conservation of M. integrifolia, A significant loss in the amount of M. integrifolia habitat has occurred (p < 0.05), with only 37% of former habitat (pre-clearing) remaining in 2003. Remnant patches are significantly smaller, have larger edge-to-area ratios and are more isolated from each other compared to pre-clearing configurations (p < 0.05). Whilst the network of suitable habitat patches is still largely intact, there are numerous smaller patches that are more isolated in the contemporary landscape compared with their connectedness before clearing. These results suggest that in situ conservation of M. integrifolia may be best achieved through a landscape approach that considers the relative contribution of small remnant habitat fragments to the species as a whole, as facilitating connectivity among the entire network of habitat patches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generating accurate population-specific public health messages regarding sun protection requires knowledge about seasonal variation in sun exposure in different environments. To address this issue for a subtropical area of Australia, we used polysulphone badges to measure UVR for the township of Nambour (26° latitude) and personal UVR exposure among Nambour residents who were taking part in a skin cancer prevention trial. Badges were worn by participants for two winter and two summer days. The ambient UVR was approximately three times as high in summer as in winter. However, participants received more than twice the proportion of available UVR in winter as in summer (6.5%vs 2.7%, P < 0.05), resulting in an average ratio of summer to winter personal UVR exposure of 1.35. The average absolute difference in daily dose between summer and winter was only one-seventh of a minimal erythemal dose. Extrapolating from our data, we estimate that ca. 42% of the total exposure received in the 6 months of winter (June–August) and summer (December–February) is received during the three winter months. Our data show that in Queensland a substantial proportion of people’s annual UVR dose is obtained in winter, underscoring the need for dissemination of sun protection messages throughout the year in subtropical and tropical climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gas emissions from a well established, unfertilized tropical grass-legume pasture were monitored over two consecutive years using high resolution automatic sampling. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than WFPS alone. Mean annual emissions were significantly higher during 2008 (5.7 ± 1.0 g N2O-N/ha/day) than 2007 (3.9 ± 0.4 and g N2O-N/ha/day) despite receiving nearly 500 mm less rain. Mean CO2 (28.2 ± 1.5 kg CO2 C/ha/day) was not significantly different (P < 0.01) between measurement years, emissions being highly dependent on temperature. A negative correlation between CO2 and WFPS at >70% indicated a threshold for soil conditions favouring denitrification. The use of automatic chambers for high resolution greenhouse gas sampling can greatly reduce emission estimation errors associated with temperature and WFPS changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change mitigation is driving demand for energy-efficient and environmentally conscious commercial buildings in Australia. In the Australian subtropics, high rainfall, warm weather and humidity present unique challenges and opportunities for the architects tasked with designing eco-sensitive projects. The case of the James Street Market in Brisbane’s Fortitude Valley shows that climate-responsive design is an effective approach for reducing the environmental impact of commercial developments. The James Street Market combines climate-responsiveness, environmentally sensitive design strategies and smart planning to create a more sustainable retail precinct. This paper details the design strategies featured in the James Street Market, the project that kicked off a renaissance in climate-responsive commercial building design in Brisbane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Centre for Subtropical Design at QUT, in partnership with the Queensland Government and Brisbane City Council, conducts research focused on 'best practice' outcomes for higher density urban living environments in the subtropics through the study of typical urban residential typologies, and urban design. The aim of the research is to inform and illustrate best practice subtropical design principles to policy makers and development industry professionals to stimulate climate-responsive outcomes. The Centre for Subtropical Design recently sought project-specific funding from the Queensland Department of Infrastructure and Planning (DIP) to investigate residential typologies for sustainable subtropical urban communities, based on transit orientated development principles and outcomes for areas around public transport nodes. A development site within the Fitzgibbon Urban Development Area, and close to a rail and bsu transport corridor, provided a case study location for this project. Four design-led multi-disciplinary creative teams participated in a Design Charrette and have produced concept drawings and propositions on a range of options, or prototypes. Analysis of selected prototypes has been undertaken to determine their environmental, economic and social performance. This Project Report discusses the scope of the project funded by DIP in terms of activities undertaken to date, and deliverables achieved. A subsequent Research Report will discuss the detailed findings of the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In June 2009 the Centre for Subtropical Design at the Queensland University of Technology conducted a design charrette to research design concepts for liveable subtropical neighbourhoods characterised by higher-density, mixed-use, family orientated housing. Subsequent analysis of the proposed designs evaluated how well these typologies support economic, environmental and social sustainability. The study was led by Ms Rosemary Kennedy, Director of the Centre for Subtropical Design and QUT School of Design Adjunct Professor Peter Richards, Chair of the Centre for Subtropical Design Board and director of Deicke Richards Architects and Urban Designers.