976 resultados para Subcutaneous Tissue
Resumo:
The aim of this study was to evaluate the response of rat subcutaneous tissue to MTA Fillapex® (Angelus), an experimental root canal filling material based on Portland cement and propylene glycol (PCPG), and a zinc oxide, eugenol and iodoform (ZOEI) paste. These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were stained with hematoxylin and eosin, and evaluated regarding inflammatory reaction parameters by optical microscopy. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated examiners for all experimental periods (kappa=0.96). The histological evaluation showed that all materials caused a moderate inflammatory reaction at 7 days, which subsided with time. A greater inflammatory reaction was observed at 7 days in the tubes filled with ZOEI paste. Tubes filled with MTA Fillapex presented some giant cells, macrophages and lymphocytes after 7 days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The tubes filled with PCPG showed similar results to those observed in MTA Fillapex. At 15 days, the inflammatory reaction was almost absent at the tissue, with several collagen fibers indicating normal tissue healing. Data were analyzed by the nonparametric Kruskal-Wallis test (?=0.05). Statistically significant difference (p<0.05) was found only between PCPG at 15 days and ZOEI at 7 days groups. No significant differences were observed among the other groups/periods (p>0.05). MTA Fillapex and Portland cement added with propylene glycol had greater tissue compatibility than the PCPG paste.
Resumo:
Background: Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. Objectives: To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. Methods: 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. Results: The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Conclusion: Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.
Resumo:
Surgical stress response markedly increases sympathetic nerve activity and catecholamine concentrations. This may contribute to peripheral vasoconstriction, reduced wound perfusion and subsequent tissue hypoxia. Opioids are known to depress the hypothalamic-adrenal response to surgery in a dose-dependent manner. We tested the hypothesis that continuous remifentanil administration produces improved subcutaneous tissue oxygen tension compared to fentanyl bolus administration. Forty-six patients undergoing major abdominal surgery were randomly assigned to receive either fentanyl bolus administration or continuous remifentanil infusion. Mean subcutaneous tissue oxygen values over the entire intra-operative period were significantly higher in the remifentanil group, when compared to the fentanyl group: 8 (2) kPa vs 6.7 (1.5) kPa, % CI difference: - 2.3 kPa to - 0.3 kPa, p = 0.013. Continuous intra-operative opioid administration may blunt vasoconstriction caused by surgical stress and adrenergic responses more than an equi-effective anaesthetic regimen based on smaller-dose bolus opioid administration.
Resumo:
Tumour necrosis factor (TNF)alpha is implicated in the relationship between obesity and insulin resistance/ type 2 diabetes. In an effort to understand this association better we (i) profiled gene expression patterns of TNF, TNFR1 and TNFR2 and (ii) investigated the effects of TNF on glucose uptake in isolated adipocytes and adipose tissue explants from omental and subcutaneous depots from lean, overweight and obese individuals. TNF expression correlated with expression of TNFR2, but not TNFR1, and TNF and TNFR2 expression increased in obesity. TNFR1 expression was higher in omental than in subcutaneous adipocytes. Expression levels of TNF or either receptor did not differ between adipocytes from individuals with central and peripheral obesity. TNF only suppressed glucose uptake in insulin-stimulated subcutaneous tissue and this suppression was only observed in tissue from lean subjects. These data support a relationship between the TNF system and body mass index (BMI), but not fat distribution, and suggest depot specificity of the TNF effect on glucose uptake. Furthermore, adipose tissue from obese subjects already appears insulin 'resistant' and this may be a result of the increased TNF levels.
Resumo:
Acellular dermal matrices (ADM) are commonly used in reconstructive procedures and rely on host cell invasion to become incorporated into host tissues. We investigated different approaches to adipose-derived stem cells (ASCs) engraftment into ADM to enhance this process. Lewis rat adipose-derived stem cells were isolated and grafted (3.0 × 10(5) cells) to porcine ADM disks (1.5 mm thick × 6 mm diameter) using either passive onlay or interstitial injection seeding techniques. Following incubation, seeding efficiency and seeded cell viability were measured in vitro. In addition, Eighteen Lewis rats underwent subcutaneous placement of ADM disk either as control or seeded with PKH67 labeled ASCs. ADM disks were seeded with ASCs using either onlay or injection techniques. On day 7 and or 14, ADM disks were harvested and analyzed for host cell infiltration. Onlay and injection techniques resulted in unique seeding patterns; however cell seeding efficiency and cell viability were similar. In-vivo studies showed significantly increased host cell infiltration towards the ASCs foci following injection seeding in comparison to control group (p < 0.05). Moreover, regional endothelial cell invasion was significantly greater in ASCs injected grafts in comparison to onlay seeding (p < 0.05). ADM can successfully be engrafted with ASCs. Interstitial engraftment of ASCs into ADM via injection enhances regional infiltration of host cells and angiogenesis, whereas onlay seeding showed relatively broad and superficial cell infiltration. These findings may be applied to improve the incorporation of avascular engineered constructs.
Resumo:
Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors).
Resumo:
The purpose of this study is to evaluate the influence of the undermining of the subcutaneous tissue on the tension of the abdominal wall, after the components separation of the abdominal muscles. Twenty adult cadavers were studied. The resistance of the medial advancement of both anterior and posterior recti sheaths was represented by the traction index and measured in 2 levels-3 cm above and 2 cm below the umbilicus. Traction indices were compared in the following 3 consecutive dissection situations: (1) after the subcutaneous tissue undermining laterally to the semilunaris line; (2) after the dissection of the rectus muscle from its posterior sheath associated with the release of the external oblique muscle; (3) after the subcutaneous tissue undermining laterally to the anterior axillary line. Friedman and Spearman tests were used to compare the results. There was no statistical significant difference between the subcutaneous tissue undermining laterally to the semilunaris line and that laterally to the anterior axillary line, when associated with the musculoaponeurotic dissections. In conclusion, limited subcutaneous undermining does not influence the tension of closure of the musculoaponeurotic layer after the components separation technique in cadavers.
Resumo:
Background: Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering.Methods: Twenty-five Swiss Albino mice were used. A 10 x 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology.Results: A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface.Conclusion: The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.
Resumo:
Objective: The aim of this study was to compare two methodologies used in the evaluation of tissue response to root-end filling materials in rats. Material and Methods: Forty rats were divided into 4 groups: in Groups I and II (control groups), empty polyethylene tubes were implanted in the extraction site and in the subcutaneous tissue, respectively; in Groups III and IV, polyethylene tubes filled with ProRoot MTA were implanted in the extraction site and in the subcutaneous tissue, respectively. The animals were killed 7 and 30 days after tube implantation, and the hemi-maxillas and the capsular subcutaneous tissue, both with the tubes, were removed. Specimens were processed and evaluated histomorphologicaly under light microscopy. The scores obtained were analyzed statistically by the Kruskal-Wallis test (p<0.05). Results: There were no statistically significant differences between the implantation methods (p=0.78033, p=0.72039). It was observed that the 30-day groups presented a more mature healing process due to smaller number of inflammatory cells. Conclusions: The present study showed no differences in tissue responses as far as the implantation site and the studied period were concerned. Alveolar socket implantation methodology represents an interesting method in the study of the biological properties of root-end filling endodontic materials due to the opportunity to evaluate bone tissue response.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to evaluate the rat subcutaneous tissue reaction to implanted polyethylene tubes filled with mineral trioxide aggregate (MTA) FILLAPEX (R) compared to the reaction to tubes filled with Sealapex (R) or Angelus MTA (R). These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7, 15, 30, 60, and 90 days. The specimens were stained with hematoxylin and eosin or Von Kossa or left unstained for examination under polarized light. Qualitative and quantitative evaluations of the reaction were performed. All materials caused moderate reactions after 7 days, which decreased with time. The reactions were moderate and similar to that evoked by the control and Sealapex (R) on the 15th day. MTA FILLAPEX (R) and Angelus MTA caused mild reactions beginning after 15 days. Mineralization and granulation birefringent to polarized light were observed with all materials. It was concluded that MTA FILLAPEX (R) was biocompatible and stimulated mineralization.
Resumo:
Introduction: The endodontic regenerative procedure (ERP), which is an alternative to calcium hydroxide induced apexification, involves the use of a triple antibiotic paste (TAP) as a dressing material. The aim of this study was to evaluate the response of rat subcutaneous tissue to implanted polyethylene tubes that were filled with TAP or calcium hydroxide. Methods: Thirty rats received 2 individual implants of polyethylene tubes filled with TAP or calcium hydroxide paste (CHP) and another empty tube as a control. Thirty additional rats received 2 individual implants consisting of polyethylene tubes filled with dressing material carriers (macrogol and propylene glycol) and a sham procedure. After 7, 15, 30, 60, and 90 days, 12 animals were euthanized, and the tubes and surrounding tissue were removed and processed for histology by using glycol methacrylate and stained with hematoxylin and eosin. The histological score ranged from 0 to 3 depending on the content of inflammatory cells; the fibrous capsule was considered thin or thick, and necrosis and calcification were recorded as present or absent. The results were analyzed using the Kruskal-Wallis test. Results: Both dressing materials induced moderate reactions at 7 and 15 days. These reactions were similar to the control (P>.05) and reduced in intensity (to mild) from day 30 onward (P>.05). The carriers did not interfere with the reaction of the dressing materials. Conclusions: TAP and CHP were biocompatible over the different experimental periods examined. (J Endod 2012;38:91-94)
Resumo:
Introduction: A new cement (CER; Cimento Endodontico Rapido or fast endodontic cement) has been developed to improve handling properties. It is a formulation that has Portland cement in gel. However, there had not yet been any study evaluating its biologic properties. The purpose of this study was to evaluate the rat subcutaneous tissue response to CER and Angelus MTA. Methods: The materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for 7, 30, and 60 days. The specimens were prepared to be stained with hematoxylin-eosin or von Kossa or not stained for polarized light. The presence of inflammation, predominant cell type, calcification, and thickness of fibrous connective tissue were recorded. Scores were defined as follows: 0, none or few inflammatory cells, no reaction; 1, <25 cells, mild reaction; 2, 25-125 cells, moderate reaction; 3, >125 cells, severe reaction. Fibrous capsule was categorized as thin when thickness was <150 mu m and thick at >150 mu m. Necrosis and formation of calcification were both recorded. Results: Both materials Angelus MTA and CER caused moderate reactions at 7 days, which decreased with time. The response was similar to the control at 30 and 60 days with Angelus MTA and CER, characterized by organized connective tissue and presence of some chronic inflammatory cells. Mineralization and granulations birefringent to polarized light were observed with both materials. Conclusions: It was possible to conclude that CER was biocompatible and stimulated mineralization. (J Endod 2009,35:1377-1380)
Resumo:
The aim of this study was to histopathologically examine the reaction of the connective tissue of rats to 2 calcium hydroxide-based sealers, Acroseal and Sealapex. Dentin tubes containing the materials and empty control tubes were implanted into the dorsal connective tissue of 36 Wistar albino rats. The animals were killed after 7 or 30 days, and the specimens were prepared for histologic analysis with hematoxylin and eosin, Von Kossa technique, and polarized light. Results were statistically analyzed using Kruskal-Wallis test. Both materials caused mild or moderate inflammatory reactions on the 7th day, but these reactions decreased by the 30th day with no significant difference at any time (P > .05). Mineralization of the subcutaneous tissue of the rats was observed only with Sealapex.
Resumo:
Natural polymers, such as chitosan, obtained from chitin, are been widely studied for use in the tissue regeneration field. This study established a protocol to attain membranes made from this biopolymer, consisting of high or low molecular weight chitosan. The biocompatibility of these membranes was histologically evaluated, comparing them to collagen membrane surgically implanted in rat subcutaneous tissue. Fifteen Holtzmann rats were divided in three experimental groups: High and Low Molecular Weight Chitosan membranes (HMWC and LMWC) and Collagen membranes (C-control group); each of them with three experimental periods: 7, 15 and 30 days. As a result, after the seven days evaluation, the membranes were present and associated with a variable degree of inflammation, and after the 15 and 30 days evaluations, the membranes were absent in all groups. It is concluded that the chitosan-based membranes were successfully attained and presented comparable resorption times to collagen membranes.