987 resultados para Structure ordering
Resumo:
Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.
Resumo:
Confinement and Surface specific interactions call induce Structures otherwise unstable at that temperature and pressure. Here we Study the groove specific water dynamics ill the nucleic acid sequences, poly-AT and poly-GC, in long B-DNA duplex chains by large scale atomistic molecular dynamics simulations, accompanied by thermodynamic analysis. While water dynamics in the major groove remains insensitive to the sequence differences, exactly the opposite is true for the minor groove water. Much slower water dynamics observed in the minor grooves (especially in the AT minor) call be attributed to all enhanced tetrahedral ordering (< t(h)>) of water. The largest value of < t(h)> in the AT minor groove is related to the spine of hydration found in X-ray Structure. The calculated configurational entropy (S-C) of the water molecules is found to be correlated with the self-diffusion coefficient of water in different region via Adam-Gibbs relation D = A exp(-B/TSC), and also with < t(h)>.
Resumo:
Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of similar to 3.5 angstrom in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.
Resumo:
Usually metallicity accompanies ferromagnetism. K2Cr8O16 is one of the less common examples of magnetic materials, exhibiting ferromagnetism in the insulating state. Analyzing the electronic and magnetic properties within first principles electronic structure calculations, we find that the doped electrons due to K induce a charge-ordered and insulating ground state and interestingly also introduce a ferromagnetic coupling between the Cr ions. The primary considerations driving the charge ordering are found to be electrostatic ones with the charge being localized on two Cr atoms that minimize the electrostatic energy. The structural distortion that accompanies the ordering gives rise to a rare example of a charge-order driven ferromagnetic insulator.
Resumo:
KO2 is a molecular solid consisting of oxygen dimers. K present in the lattice donates an electron which goes on to occupy the O p levels.As the basic electronic structure is similar to that of an oxygen molecule, except for broadening due to solid state effects, KO2 represents the realization of the doping of oxygen molecules arranged in a lattice. These considerations alone result in magnetism with high ordering temperatures as our calculations reveal. However, we find that the high temperature structure is unstable to an orbital ordering (OO) transition. The microscopic considerations driving the OO transition, however, are electrostatic interactions instead of the often encountered superexchange driven ordering within the Kugel-Khomskii model often used to describe the OO. This OO transition is also found to preclude any possibility of high magnetic ordering temperatures, which otherwise seemed possible.
Resumo:
We present first-principles density-functional-theory-based calculations to determine the effects of the strength of on-site electron correlation, magnetic ordering, pressure and Se vacancies on phonon frequencies and electronic structure of FeSe1-x. The theoretical equilibrium structure (lattice parameters) of FeSe depends sensitively on the value of the Hubbard parameter U of on-site correlation and magnetic ordering. Our results suggest that there is a competition between different antiferromagnetic states due to comparable magnetic exchange couplings between first- and second-neighbor Fe sites. As a result, a short range order of stripe antiferromagnetic type is shown to be relevant to the normal state of FeSe at low temperature. We show that there is a strong spin-phonon coupling in FeSe (comparable to its superconducting transition temperature) as reflected in large changes in the frequencies of certain phonons with different magnetic ordering, which is used to explain the observed hardening of a Raman-active phonon at temperatures (similar to 100 K) where magnetic ordering sets in. The symmetry of the stripe antiferromagnetic phase permits an induced stress with orthorhombic symmetry, leading to orthorhombic strain as a secondary order parameter at the temperature of magnetic ordering. The presence of Se vacancies in FeSe gives rise to a large peak in the density of states near the Fermi energy, which could enhance the superconducting transition temperature within the BCS-like picture.
Resumo:
Sr2TiMnO6, a double perovskite associated with high degree of B-site cation disorder was investigated in detail for its structural, magnetic, and dielectric properties. Though x-ray powder diffraction analysis confirms its cubic structure, first order Raman scattering and infrared reflectivity spectra indicate a breaking of the local cubic symmetry. The magnetization study reveals an anomaly at 14 K owing to a ferrimagnetic/canted antiferromagneticlike ordering arising from local Mn-O-Mn clusters. Saturated M-H hysteresis loops obtained at 5 K also reflect the weak ferromagnetic exchange interactions present in the system and an approximate estimation of Mn3+/Mn4+ was done using the magnetization data for the samples sintered at different temperatures. The conductivity and dielectric behavior of this system has been investigated in a broad temperature range of 10 to 300 K. Intrinsic permittivity was obtained only below 100 K whereas giant permittivity due to conductivity and Maxwell-Wagner polarization was observed at higher temperatures. X-ray photoemission studies further confirmed the presence of mixed oxidation states of Mn and the valence band spectra analysis was carried out in detail. (C) 2010 American Institute of Physics. doi: 10.1063/1.3500369]
Resumo:
A hydrothermal reaction of Mn(OAc)(2)center dot 4H(2)O, Co(OAc)(2)center dot 4H(2)O and 1,2,4 benzenetricarboxylic acid at 220 degrees C for 24 h gives rise to a mixed metal MOF compound, CoMn2(C6H3(COO)(3))(2)], I. The structure is formed by the connectivity between octahedral CoO6 and trigonal prism MnO6 units connected through their vertices forming a Kagome layer, which are pillared by the trimellitate. Magnetic susceptibility studies on the MOF compound indicate a canted anti-ferromagnetic behavior, due to the large antisymmetric DM interaction between the M2+ ions (M = Mn, Co). Thermal decomposition studies indicate that the MOF compound forms a tetragonal mixed-metal spinel phase, CoMn2O4, with particle sizes in the nano regime at 400 degrees C. The particle size of the CoMn2O4 can be controlled by varying the decomposition temperature of the parent MOF compound. Magnetic studies of the CoMn2O4 compound suggests that the coercivity and the ferrimagnetic ordering temperatures are dependent on the particle size.
Resumo:
Variable-temperature X-ray diffraction studies of C70 suggest the occurrence of two phase transitions around 350 and 280 K where the high-temperature phase is fcc and the low-temperature phase is monoclinic, best described as a distorted hcp structure with a doubled unit cell; two like-phases (possibly hcp) seem to coexist in the 280-350 K range. Application of pressure gives rise to three distinct transitions associated with characteristic pressure coefficients, the extrapolated values of the transition temperatures at ambient pressure being around 340, 325 and 270 K. Pressure delineates closely related phases Of C70 just as in the case Of C60 which exhibits two orientational phase transitions at high pressures.
Resumo:
Neutron powder diffraction measurements on Ca2FeReO6 reveal that this double perovskite orders ferrimagnetically and shows anomalous lattice parameter behavior below T-C=521 K. Below similar to300 K and similar to160 K we observe that the high-T monoclinic crystal structure separates into two and three monoclinic phases, respectively. A magnetic field suppresses the additional phases at low T in favor of the highest-T phase. These manifestations of the orbital degree of freedom of Re 5d electrons indicate that these electrons are strongly correlated and the title compound is a Mott insulator, with competing spin-orbitally ordered states.
Resumo:
The potential energy surfaces of both neutral and dianionic SnC(2)P(2)R(2) (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6-311 + G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2-diphosphocyclobutadiene ring (1,2-DPCB) is capped by the Sn. Interestingly, the structure established by Xray diffraction analysis, for R=tBu, is a 1,3-DPCB ring capped by Sn and it is 2.4 kcal mol(-1) higher in energy than the 1,2-DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3-DPCB ring, which might originate from the synthetic precursor ZrCp(2)tBu(2)C(2)P(2). In the case of the dianionic isomers we observe only a 6 pi-electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes.([1,4,19]) The existence of large numbers of cluster-type isomers in neutral and 6 pi-planar structures in the dianions SnC(2)P(2)R(2)(2-) (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D pi aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C(5)H(5)(+) analogues indicates that Sn might be a better isolobal analogue to P(+) than to BH or CH(+). The variation in global minima in these C(5)H(5)(+) analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker p pi-p pi bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C(5)H(5)(-) analogues have 6 pi-planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the pi orbitals involved, and 2) effective overlap of orbitals.
Resumo:
The magnetic structure and properties of sodium iron fluorophosphate Na2FePO4F (space group Pbcn), a cathode material for rechargeable batteries, were studied using magnetometry and neutron powder diffraction. The material, which can be described as a quasi-layered structure with zigzag Fe-octahedral chains, develops a long-range antiferromagnetic order below similar to 3.4 K. The magnetic structure is rationalized as a super-exchange-driven ferromagnetic ordering of chains running along the a-axis, coupled antiferromagnetically by super-super-exchange via phosphate groups along the c-axis, with ordering along the b-axis likely due to the contribution of dipole dipole interactions.
Resumo:
The nano ZnFe2O4 compound was prepared by eco-friendly hydrothermal method. The characterization of the sample for its structure, morphology and composition were done by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dynamic light scattering, Fourier transform infrared spectroscopy, zeta surface profiler and UV-Visible spectroscopy studies. The PXRD measurement reveals that the compound shows spinel cubic phase belong Fd (3) over barm (227) space group. Morphology of the compound from SEM and surface profile shows nearly spherical agglomerated particles with well defined grains and grain boundaries. The material shows the semiconducting behavior with E-g of 2.3 eV at room temperature (RT). The variation in the magnetic ordering was observed for wide range of temperature. The compound behaves like a soft magnetic material with ferrimagnetic at various temperatures except at RT. Both magnetic and EPR studies supports the superparamagnetic behavior of the the sample. The DC conductivity, dielectric and AC conductivity behavior of the 1000 degrees C pellets sintered for 2 h shows good frequency dependent transport properties. The present study facilitate in selecting the suitable materials for the nanoelectronics and spintronic applications. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We studied the effect of Fe doping on structural, magnetic, and dielectric properties of hexagonal ErMnO3 system. For 50% doping of Fe on Mn site in ErMnO3 modulated its crystallographic structure from hexagonal to orthorhombic phase. Accompanied with the structural phase transition in ErMnO3, the magnetic properties are effectively modified. The Fe doped samples exhibit enhancement in antiferromagnetic ordering Neel temperature (T-N) from 77K (ErMnO3) to 280K (ErFe0.5Mn0.5O3). The anomalies observed in the dielectric constant around T-N in doped ErMnO3 samples indicate the coupling between electric and magnetic order parameters. (C) 2015 AIP Publishing LLC.
Resumo:
Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic- metal transition at T-C = 180 K and transforms into a ferromagnetic insulator below T-MI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T-C to T-MI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) similar to 3.5(k(B)T(MI)) similar to 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U similar to 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t(2g) up-spin band favor a low-energy Peierls metal-insulator transition.