943 resultados para Structure learning
Resumo:
Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.
Resumo:
This dissertation investigates the connection between spectral analysis and frame theory. When considering the spectral properties of a frame, we present a few novel results relating to the spectral decomposition. We first show that scalable frames have the property that the inner product of the scaling coefficients and the eigenvectors must equal the inverse eigenvalues. From this, we prove a similar result when an approximate scaling is obtained. We then focus on the optimization problems inherent to the scalable frames by first showing that there is an equivalence between scaling a frame and optimization problems with a non-restrictive objective function. Various objective functions are considered, and an analysis of the solution type is presented. For linear objectives, we can encourage sparse scalings, and with barrier objective functions, we force dense solutions. We further consider frames in high dimensions, and derive various solution techniques. From here, we restrict ourselves to various frame classes, to add more specificity to the results. Using frames generated from distributions allows for the placement of probabilistic bounds on scalability. For discrete distributions (Bernoulli and Rademacher), we bound the probability of encountering an ONB, and for continuous symmetric distributions (Uniform and Gaussian), we show that symmetry is retained in the transformed domain. We also prove several hyperplane-separation results. With the theory developed, we discuss graph applications of the scalability framework. We make a connection with graph conditioning, and show the in-feasibility of the problem in the general case. After a modification, we show that any complete graph can be conditioned. We then present a modification of standard PCA (robust PCA) developed by Cand\`es, and give some background into Electron Energy-Loss Spectroscopy (EELS). We design a novel scheme for the processing of EELS through robust PCA and least-squares regression, and test this scheme on biological samples. Finally, we take the idea of robust PCA and apply the technique of kernel PCA to perform robust manifold learning. We derive the problem and present an algorithm for its solution. There is also discussion of the differences with RPCA that make theoretical guarantees difficult.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
When English-learning children begin using words the majority of their early utterances (around 80%) are nouns. Compared to nouns, there is a paucity of verbs or non-verb relational words, such as 'up' meaning 'pick me up'. The primary explanations to account for these differences in use either argue in support of a 'cognitive account', which claims that verbs entail more cognitive complexity than nouns, or they provide evidence challenging this account. In this paper I propose an additional explanation for children's noun/verb asymmetry. Presenting a 'multi-modal account' of word-learning based on children's gesture and word combinations, I show that at the one-word stage English-learning children use gestures to express verb-like elements which leaves their words free to express noun-like elements.
Resumo:
Objective: To compare the volume of the hippocampus and parahippocampal gyrus in elderly individuals with and without depressive disorders, and to determine whether the volumes of these regions correlate with scores on memory tests. Method: Clinical and demographic differences, as well as differences in regional gray matter volumes, were assessed in 48 elderly patients with depressive disorders and 31 control subjects. Brain (structural MRI) scans were processed using statistical parametric mapping and voxel-based morphometry. Cognitive tests were administered to subjects in both groups. Results: There were no between-group gray matter volume differences in the hippocampus or parahippocampal gyrus. In the elderly depressed group only, the volume of the left parahippocampal gyrus correlated with scores on the delayed naming portion of the visual verbal learning test. There were also significant direct correlations in depressed subjects between the volumes of the left hippocampus, right and left parahippocampal gyrus and immediate recall scores on verbal episodic memory tests and visual learning tests. In the control group, there were direct correlations only between overall cognitive performance (as assessed with the MMSE) and the volume of right hippocampus, and between the total score on the visual verbal learning test and the volume of the right and left parahippocampal gyrus. Conclusions: These findings highlight different patterns of relationship between cognitive performance and volumes of medial temporal structures in depressed individuals and healthy elderly subjects. The direct correlation between delayed visual verbal memory recall scores with left parahippocampal volumes specifically in elderly depressed individuals provides support to the view that depression in elderly populations may be a risk factor for dementia. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Following the application of the remember/know paradigm to student learning by Conway et al. (1997), this study examined changes in learning and memory awareness of university students in a lecture course and a research methods course. The proposed shift from a dominance of 'remember' awareness in early learning to a dominance of 'know' awareness as learning progresses and schematization occurs was evident for the methods course but not for the lecture course. The patterns of remember and know awareness and proposed associated levels of schematization were supported by a separate measure of the quality of student learning using the SOLO (Structure of Observed Learning Outcomes) Taxonomy. As found by previous research, the remember-to-know shift and schematization of knowledge is dependent upon type of course and level of achievement. Findings are discussed in terms of the utility of the methodology used, the theoretical implications and the applications to educational practice. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Learning organizations are a special form of organization where enhancing learning is a strategy to increase intellectual capital. Developing learning organizations has become an imperative for many managers, since an organization's learning methods and rate may be the only source of sustainable competitive advantage. However, learning organization theory tends to be prescriptive and rhetorical, with empirical research still relatively new. This paper contributes to the literature by reporting case-study research in progress based on four Australian organizations. In the organizations studied, use of the learning organization metaphor was coupled with an emergent metaphor: organization as `family". By employing structure mapping of metaphor within analytical induction, both established methods but not combined before, this paper shows how theory might be developed from metaphor.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.
Resumo:
Input-driven models provide an explicit and readily testable account of language learning. Although we share Ellis's view that the statistical structure of the linguistic environment is a crucial and, until recently, relatively neglected variable in language learning, we also recognize that the approach makes three assumptions about cognition and language learning that are not universally shared. The three assumptions concern (a) the language learner as an intuitive statistician, (b) the constraints on what constitute relevant surface cues, and (c) the redescription problem faced by any system that seeks to derive abstract grammatical relations from the frequency of co-occurring surface forms and functions. These are significant assumptions that must be established if input-driven models are to gain wider acceptance. We comment on these issues and briefly describe a distributed, instance-based approach that retains the key features of the input-driven account advocated by Ellis but that also addresses shortcomings of the current approaches.
Resumo:
Inagaki and Hatano (2002) have argued that young children initially understand biological phenomena in terms of vitalism, a mode of construal in which life or life-force is the central causal-explanatory concept. This study investigated the development of vitalistic reasoning in young children's concepts of life, the human body and death. Sixty preschool children between the ages of 3 years, 7 months and 5 years, 11 months participated. All children were initially given structured interviews to assess their knowledge of (1) human body function and (2) death. From this sample 40 children in the Training group were taught about the human body and how it functions to maintain life. The Control group (n = 20) received no training. All 60 children were subsequently reassessed on their knowledge of human body function and death. Results from the initial interviews indicated that young children who spontaneously appealed to vitalistic concepts in reasoning about human body functioning were also more sophisticated in their understanding of death. Results from the posttraining interviews showed that children readily learned to adopt a vitalistic approach to human body functioning, and that this learning coincided with significant development in their understanding of human body function, and of death. The overall pattern of results supports the claim that the acquisition of a vitalistic causal-explanatory framework serves to structure children's concepts and facilitates learning in the domain of biology. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
This paper aims to describe the processes of teaching illustration and animation, together, in the context of a masters degree program. In Portugal, until very recently, illustration and animation higher education courses, were very scarce and only provided by a few private universities, which offered separated programs - either illustration or animation. The MA in Illustration and Animation (MIA) based in the Instituto Politécnico do Cávado e Ave in Portugal, dared to join these two creative areas in a common learning model and is already starting it’s third edition with encouraging results and will be supported by the first international conference on illustration and animation (CONFIA). This masters program integrates several approaches and techniques (in illustration and animation) and integrates and encourages creative writing and critique writing. This paper describes the iterative process of construction, and implementation of the program as well as the results obtained on the initial years of existence in terms of pedagogic and learning conclusions. In summary, we aim to compare pedagogic models of animation or illustration teaching in higher education opposed to a more contemporary and multidisciplinary model approach that integrates the two - on an earlier stage - and allows them to be developed separately – on the second part of the program. This is based on the differences and specificities of animation (from classic techniques to 3D) and illustration (drawing the illustration) and the intersection area of these two subjects within the program structure focused on the students learning and competencies acquired to use in professional or authorial projects.