979 resultados para Structural Materials
Resumo:
Designers respond to issues and synthesize ideas from throughout the day as voices from the field who directly encounter the need for recently graduated students to possess the ability to investigate and interrogate materials.
Resumo:
Educators representing interactions with materials speak to critical approaches, life-cycle concerns, critical thinking of composition/process/properties.
Resumo:
The FePt alloy undergoes the cubic to tetragonal lattice transformation in the ferromagnetic state. We calculated the electronic structure for both cubic and tetragonal structures using the FPLAPW method with APW + lo. Comparing the density of states of the cubic and tetragonal structures, it is expected that the lattice transformation is caused by the band Jahn-Teller effect. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe the design, manufacturing, and testing results of a Nb3Sn superconducting coil in which TiAIV alloys were used instead of stainless steel to reduce the magnetization contribution caused by the heat treatment for the A-15 Nb-3 Sn phase formation that affects the magnetic field homogeneity. Prior to the coil manufacturing several structural materials were studied and evaluated in terms of their mechanical and magnetic properties in as-worked, welded, and heat-treated conditions. The manufacturing process employed the wind-and-react technique followed by vacuum-pressure impregnation(VPI) at 1 MPa atm. The critical steps of the manufacturing process, besides the heat treatment and impregnation, are the wire splicing and joint manufacturing in which copper posts supported by Si3N4 ceramic were used. The coil was tested with and without a background NbTi coil and the results have shown performance exceeding the design quench current confirming the successful coil construction.
Resumo:
Fibre-Reinforced-Plastics are composite materials composed by thin fibres with high mechanical properties, made to work together with a cohesive plastic matrix. The huge advantages of fibre reinforced plastics over traditional materials are their high specific mechanical properties i.e. high stiffness and strength to weight ratios. This kind of composite materials is the most disruptive innovation in the structural materials field seen in recent years and the areas of potential application are still many. However, there are few aspects which limit their growth: on the one hand the information available about their properties and long term behaviour is still scarce, especially if compared with traditional materials for which there has been developed an extended database through years of use and research. On the other hand, the technologies of production are still not as developed as the ones available to form plastics, metals and other traditional materials. A third aspect is that the new properties presented by these materials e.g. their anisotropy, difficult the design of components. This thesis will provide several case-studies with advancements regarding the three limitations mentioned. In particular, the long term mechanical properties have been studied through an experimental analysis of the impact of seawater on GFRP. Regarding production methods, the pre-impregnated cured in autoclave process was considered: a rapid tooling method to produce moulds will be presented, and a study about the production of thick components. Also, two liquid composite moulding methods will be presented, with a case-study regarding a large component with sandwich structure that was produced with the Vacuum-Assisted-Resin-Infusion method, and a case-study regarding a thick con-rod beam that was produced with the Resin-Transfer-Moulding process. The final case-study will analyse the loads acting during the use of a particular sportive component, made with FRP layers and a sandwich structure, practical design rules will be provided.
Resumo:
The International FusionMaterials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusionmaterials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design. This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functionalmaterials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor.
Resumo:
Mode of access: Internet.
Resumo:
The research activity carried out in the Brasimone Research Center of ENEA concerns the development and mechanical characterization of steels conceived as structural materials for future fission reactors (Heavy Liquid Metal IV Generation reactors: MYRRHA and ALFRED) and for the future fusion reactor DEMO. Within this framework, two parallel lines of research have been carried out: (i) characterization in liquid lead of steels and weldings for the components of the IV Generation fission reactors (GIV) by means of creep and SSRT (Slow Strain Rate Tensile) tests; (ii) development and screening on mechanical properties of RAFM (Reduced Activation Ferritic Martensitic) steels to be employed as structural materials of the future DEMO fusion reactor. The doctoral work represents therefore a comprehensive report of the research carried out on nuclear materials both from the point of view of the qualification of existing (commercial) materials for their application in the typical environmental conditions of 4th generation fission reactors operating with lead as coolant, and from the point of view of the metallurgical study (with annexed microstructural and mechanical characterization of the selected compositions / Thermo Mechanical Treatment (TMT) options) of new compositional variants to be proposed for the “Breeding Blanket” of the future DEMO Fusion Reactor.
Resumo:
In recent years, the Me-Si-B (Me-metal) ternary systems have received considerable attention aiming at the development of high-temperature structural materials. Assuming that any real application of these materials will rely on multicomponent alloys, as is the case of Ni-base superalloys, phase equilibria data of these systems become very important. In this work, results are reported on phase equilibria in the V-Si-B system, and are summarized in the form of an isothermal section at 1600 A degrees C for the V-VSi(2)-VB region. Several alloys of different compositions were prepared via arc melting and then heat-treated at 1600 A degrees C under high vacuum. All the materials in both as-cast and heat-treated conditions were characterized through x-ray diffraction, scanning electron microscopy, and selected alloys via wavelength dispersive spectroscopy. A negligible solubility of B in the V(3)Si, V(5)Si(3) (T(1)), and V(6)Si(5) phases as well as of Si in V(3)B(2) and VB phases was noted. Two ternary phases presenting the structures known as T(2) (Cr(5)B(3)-prototype) and D8(8) (Mn(5)Si(3)-prototype) were observed in both as-cast and heat-treated samples. It is proposed that at 1600 A degrees C the homogeneity range of T(2) extends approximately from 5 at.% to 12 at.% Si at constant vanadium content and the composition of D8(8) phase is close to V(59.5)Si(33)B(7.5) (at.%).
Resumo:
Yttria stabilized tetragonal zirconia (Y-TZP) ceramics were sintered by liquid phase sintering at low temperatures using bioglass as sintering additive. ZrO2-bioglass ceramics were prepared by mixing a ZrO2 stabilized with 3 Mol%Y2O3 and different amounts of bioglass based on 3CaO center dot P2O5-MgO-SiO2 system. Mixtures were compacted by uniaxial cold pressing and sintered in air, at 1200 and 1300 degrees C for 120 min. The influence of the bioglass content on the densification, tetragonal phase stability, bending strength, hardness and fracture toughness was investigated. The ceramics sintered at 1300 degrees C and prepared by addition of 3% of bioglass, exhibited the highest strength of 435 MPa, hardness of 1170 HV and fracture toughness of 6.3 MPa m(1/2). These results are related to the low monoclinic phase content, high relative density and the presence of the thermal residual stress generated between the ZrO2-matrix and bioglass grain boundary, contributing to the activation of the toughening mechanisms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Composition and orientation effects on the final recrystallization texture of three coarse-grained Nb-containing AISI 430 ferritic stainless steels (FSSs) were investigated. Hot-bands of steels containing distinct amounts of niobium, carbon and nitrogen were annealed at 1250 degrees C for 2h to promote grain growth. In particular, the amounts of Nb in solid solution vary from one grade to another. For purposes of comparison, the texture evolution of a hot-band sheet annealed at 1030 degrees C for 1 min (finer grain structure) was also investigated. Subsequently, the four sheets were cold rolled up to 80% reduction and then annealed at 800 degrees C for 15 min. Texture was determined using X-ray diffraction and electron backscatter diffraction (EBSD). Noticeable differences regarding the final recrystallization texture and microstructure were observed in the four investigated grades. Results suggest that distinct nucleation mechanisms take place within these large grains leading to the development of different final recrystallization textures. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Oxide dispersion strengthened reduced-activation ferritic-martensitic steels are promising candidates for applications in future fusion power plants. Samples of a reduced activation ferritic-martensitic 9 wt.%Cr-oxide dispersion strengthened Eurofer steel were cold rolled to 80% reduction in thickness and annealed in vacuum for 1 h from 200 to 1350 degrees C to evaluate its thermal stability. Vickers microhardness testing and electron backscatter diffraction (EBSD) were used to characterize the microstructure. The microstructural changes were also followed by magnetic measurements, in particular the corresponding variation of the coercive field (H(c)), as a function of the annealing treatment. Results show that magnetic measurements were sensitive to detect the changes, in particular the martensitic transformation, in samples annealed above 850 degrees C (austenitic regime). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The thermal expansion anisotropy of the V(5)Si(3) and T(2)-phase of the V-Si-B system were determined by high-temperature X-ray diffraction from 298 to 1273 K. Alloys with nominal compositions V(62.5)Si(37.5) (V5Si3 phase) and V(63)Si(12)B(25) (T(2)-phase) were prepared from high-purity materials through arc-melting followed by heat-treatment at 1873 K by 24 h, under argon atmosphere. The V(5)Si(3) phase exhibits thermal expansion anisotropy equals to 1.3, with thermal expansion coefficients along the a and c-axis equal to 9.3 x 10(-6) K(-1) and 11.7 x 10(-6) K(-1), respectively. Similarly, the thermal expansion anisotropy value of the T(2)-phase is 0.9 with thermal expansion coefficients equal to 8.8 x 10(-6) K(-1) and 8.3 x 10(-6) K(-1) along the, a and c-axis respectively. Compared to other isostructural silicides of the 5:3 type and the Ti(5)Si(3) phase, the V(5)Si(3) phase presents lower thermal expansion anisotropy. The T(2)-phase present in the V-Si-B system exhibits low thermal expansion anisotropy, as the T(2)-phase of the Mo-Si-B, Nb-Si-B and W-Si-B systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A combination of an extension of the topological instability ""lambda criterion"" and a thermodynamic criterion were applied to the Al-La system, indicating the best range of compositions for glass formation. Alloy compositions in this range were prepared by melt-spinning and casting in an arc-melting furnace with a wedge-section copper mold. The GFA of these samples was evaluated by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. The results indicated that the gamma* parameter of compositions with high GFA is higher, corresponding to a range in which the lambda parameter is greater than 0.1, which are compositions far from Al solid solution. A new alloy was identified with the best GFA reported so far for this system, showing a maximum thickness of 286 mu m in a wedge-section copper mold. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
In this work, the synthesis of Y(2)O(3) stabilized tetragonal zirconia polycrystals (Y-TZP)-alumina (Al(2)O(3)) powder mixture was performed by high-energy ball milling and the sintering behavior of this composite was investigated. In order to understand the phase transformations occurring during ball milling, samples were collected after different milling times, from 1 to 60 h. The milled powders were compacted by cold uniaxial pressing and sintered at 1400 and 1600 degrees C. Both powders and sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry analysis (EDS) and mechanical properties. Fully dense samples were obtained after sintering at 1600 degrees C, while the samples sintered at 1400 degrees C presented a full density for powder mixtures milled for 30 and 60 h. Fracture toughness and Vickers hardnessvalues of the Y-T-ZP/Al(2)O(3) nanocomposite were improved due to dispersed Al(2)O(3) grains and reduced ZrO(2) grain size. Samples sintered at 1400 degrees C, based on powders milled for 60 h, presented high K(IC) and hardness values near to 8.0 Mpan(1/2) and 15 GPa, respectively (C) 2008 Elsevier B.V. All rights reserved