927 resultados para String Duality
Resumo:
Many grid connected PV installations consist of a single series string of PV modules and a single DC-AC inverter. This efficiency of this topology can be enhanced with additional low power, low cost per panel converter modules. Most current flows directly in the series string which ensures high efficiency. However parallel Cúk or buck-boost DC-DC converters connected across each adjacent pair of modules now support any desired current difference between series connected PV modules. Each converter “shuffles” the desired difference in PV module currents between two modules and so on up the string. Spice simulations show that even with poor efficiency, these modules can make a significant improvement to the overall power which can be recovered from partially shaded PV strings.
Resumo:
Danny Harley has had a pretty big year with his one-man band project The Kite String Tangle. There have been festival appearances, both at home and abroad, a song in the top 20 of Triple J’s iconic Hottest 100 annual music poll and a sold-out tour to mark the release of his debut EP, which wrapped up this week with two shows in the Spiegeltent at the Brisbane Festival...
Resumo:
A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.
Resumo:
We study the hydrodynamic properties of strongly coupled SU(N) Yang-Mills theory of the D1-brane at finite temperature in the framework of gauge/gravity duality. The only non-trivial viscous transport coefficient in 1+1 dimensions is the bulk viscosity. We evaluate the bulk viscosity by isolating the quasi-normal mode corresponding to the sound channel for the gravitational background of the D1-brane. We find that the ratio of the bulk viscosity to the entropy density to be 1/4 pi. This ratio continues to be 1/4 pi also in the regime when the D1-brane Yang-Mills theory is dual to the gravitational background of the fundamental string. Our analysis shows that this ratio is equal to 1/4 pi for a class of gravitational backgrounds dual to field theories in 1+1 dimensions obtained by considering D1-branes at cones over Sasaki-Einstein 7-manifolds.
Resumo:
Analytical expressions for the corrections to duality are obtained for nonsingular potentials, and are found to be small numerically. An alternative consistent way of energy smoothing, developed by Strutinsky, is elucidated. This may be of use even when potential models are not valid.
Resumo:
A new mode of driven nonlinear vibrations of a stretched string is investigated with reference to conditions of existence, properties, and regions of stability. It is shown that this mode exhibits negative resistance properties at all frequencies and driving force amplitudes. Discovery of this mode helps to fill certain gaps in the theory of forced nonlinear vibrations of strings.
Resumo:
The Shifman-Vainshtein-Zakharov method of determining the eigenvalues and coupling strengths, from the operator product expansion, for the current correlation functions is studied in the nonrelativistic context, using the semiclassical expansion. The relationship between the low-lying eigenvalues, and the leading corrections to the imaginary-time Green function is elucidated by comparing systems which have almost identical spectra. In the case of an anharmonic oscillator it is found that with the procedure stated in the paper, that inclusion of more terms to the asymptotic expansion does not show any simple trend towards convergence to the exact values. Generalization to higher partial waves is given. In particular for the P-level of the oscillator, the procedure gives poorer results than for the S-level, although the ratio of the two comes out much better.
Resumo:
We study the properties of walls of marginal stability for BPS decays in a class of N = 2 theories. These theories arise in N = 2 string compactifications obtained as freely acting orbifolds of N = 4 theories, such theories include the STU model and the FHSV model. The cross sections of these walls for a generic decay in the axion-dilaton plane reduce to lines or circles. From the continuity properties of walls of marginal stability we show that central charges of BPS states do not vanish in the interior of the moduli space. Given a charge vector of a BPS state corresponding to a large black hole in these theories, we show that all walls of marginal stability intersect at the same point in the lower half of the axion-dilaton plane. We isolate a class of decays whose walls of marginal stability always lie in a region bounded by walls formed by decays to small black holes. This enables us to isolate a region in moduli space for which no decays occur within this class. We then study entropy enigma decays for such models and show that for generic values of the moduli, that is when moduli are of order one compared to the charges, entropy enigma decays do not occur in these models.
Resumo:
By using the Y(gl(m|n)) super Yangian symmetry of the SU(m|n) supersymmetric Haldane-Shastry spin chain, we show that the partition function of this model satisfies a duality relation under the exchange of bosonic and fermionic spin degrees of freedom. As a byproduct of this study of the duality relation, we find a novel combinatorial formula for the super Schur polynomials associated with some irreducible representations of the Y(gl(m|n)) Yangian algebra. Finally, we reveal an intimate connection between the global SU(m|n) symmetry of a spin chain and the boson-fermion duality relation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new rotating beam finite element is developed in which the basis functions are obtained by the exact solution of the governing static homogenous differential equation of a stiff string, which results from an approximation in the rotating beam equation. These shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. Using this new element and the Hermite cubic finite element, a convergence study of natural frequencies is performed, and it is found that the new element converges much more rapidly than the conventional Hermite cubic element for the first two modes at higher rotation speeds. The new element is also applied for uniform and tapered rotating beams to determine the natural frequencies, and the results compare very well with the published results given in the literature.
Resumo:
Sequence design problems are considered in this paper. The problem of sum power minimization in a spread spectrum system can be reduced to the problem of sum capacity maximization, and vice versa. A solution to one of the problems yields a solution to the other. Subsequently, conceptually simple sequence design algorithms known to hold for the white-noise case are extended to the colored noise case. The algorithms yield an upper bound of 2N - L on the number of sequences where N is the processing gain and L the number of non-interfering subsets of users. If some users (at most N - 1) are allowed to signal along a limited number of multiple dimensions, then N orthogonal sequences suffice.
Resumo:
In this thesis we examine multi-field inflationary models of the early Universe. Since non-Gaussianities may allow for the possibility to discriminate between models of inflation, we compute deviations from a Gaussian spectrum of primordial perturbations by extending the delta-N formalism. We use N-flation as a concrete model; our findings show that these models are generically indistinguishable as long as the slow roll approximation is still valid. Besides computing non-Guassinities, we also investigate Preheating after multi-field inflation. Within the framework of N-flation, we find that preheating via parametric resonance is suppressed, an indication that it is the old theory of preheating that is applicable. In addition to studying non-Gaussianities and preheatng in multi-field inflationary models, we study magnetogenesis in the early universe. To this aim, we propose a mechanism to generate primordial magnetic fields via rotating cosmic string loops. Magnetic fields in the micro-Gauss range have been observed in galaxies and clusters, but their origin has remained elusive. We consider a network of strings and find that rotating cosmic string loops, which are continuously produced in such networks, are viable candidates for magnetogenesis with relevant strength and length scales, provided we use a high string tension and an efficient dynamo.
Resumo:
Equations proposed in previous work on the non-linear motion of a string show a basic disagreement, which is here traced to an assumption about the longitudinal displacement u. It is shown that it is neither necessary nor justifiable to assume that u is zero; and also that the velocity of propagation of u disturbances in a string is different from that in an infinite medium, although this difference is usually negligible. After formulating the exact equations of motion for the string, a systematic procedure is described for obtaining approximations to these equations to any order, making only the assumption that the strain in the material of the string is small. The lowest order equations in this scheme are non-linear, and are used to describe the response of a string near resonance. Finally, it is shown that in the absence of damping, planar motion of a string is always unstable at sufficiently high amplitudes, the critical amplitude falling to zero at the natural frequency and its subharmonics. The effect of slight damping on this instability is also discussed.