998 resultados para Streptococcus Groupe B


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introdução: O rastreio para doenças de transmissão vertical na gravidez contribuiu para a melhoria dos cuidados perinatais. Objectivo: Avaliar o resultado de serologias para infeções do grupo TORCH e do rastreio para Streptococcus do grupo B (SGB) numa amostra de grávidas de uma maternidade, estudar a influência da idade e da nacionalidade, e identificar casos de infecção congénita. Material e Métodos: Estudo não probabilístico de prevalência de imunidade e infecção durante a gravidez. Resultados: Registámos 9508 serologias TORCH e 2639 resultados de rastreio para SGB. A taxa de imunidade para rubéola foi 93,3%, significativamente mais elevada em portuguesas; 25,7% das mulheres tinham IgG positiva para Toxoplasma goondii; a taxa foi mais elevada nas mulheres mais velhas e entre estrangeiras; encontrámos IgG positiva para vírus citomegálico humano (CMV) em 62,4%; não houve variação com a idade. O VDRL foi reactivo em 0,5%; 2,3% das mães tinham AgHBs positivo, mais frequente nas estrangeiras; 1,4% tinha anticorpos para o vírus da hepatite C e 0,7% tinha VIH positivo. Não houve casos declarados de infeção congénita; 13,9% das mulheres eram portadoras de SGB. Discussão: A elevada taxa de imunidade para a rubéola é resultado da política nacional de vacinação. A baixa taxa de imunidade para a toxoplasmose torna mais dispendioso o seguimento das grávidas. A elevada prevalência do CMV está de acordo com o encontrado na comunidade. Para algumas infeções foram encontradas diferenças de acordo com a nacionalidade. Conclusão: O conhecimento da imunidade e infecção na população é um instrumento importante para o planeamento dos rastreios durante a gravidez.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Endothelial dysfunction is a major component of the pathophysiology of septicaemic group B Streptococcus (GBS) infections. Although cytokines have been shown to activate human umbilical vein endothelial cells (HUVECs), the capacity of interferon (IFN)-γ to enhance the microbicidal activity of HUVECs against GBS has not been studied. We report that the viability of intracellular bacteria was reduced in HUVECs activated by IFN-γ. Enhanced fusion of lysosomes with bacteria-containing vacuoles was observed by acid phosphatase and the colocalisation of Rab-5, Rab-7 and lysosomal-associated membrane protein-1 with GBS in IFN-γ-activated HUVECs. IFN-γ resulted in an enhancement of the phagosome maturation process in HUVECs, improving the capacity to control the intracellular survival of GBS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a case of bacterial endocarditis caused by nonhemolytic group B streptococcus (GBS) in a 67-year-old man with no predisposing risk factors. Nonhemolytic GBS strains rarely cause illness and are usually detected in perinatal infections. We believe this to be the first reported case of endocarditis caused by a nonhemolytic strain of GBS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: In a prior study, we demonstrated that ACVBP + consolidation was superior to 3 cycles of CHOP + radiotherapy in young patients (pts) with localized aggressive lymphoma (Reyes F et al. N Engl J Med 2005;352:1197). This randomized trial compared in these pts ACVBP vs. ACVBP + a short course of rituximab (R-ACVBP).Methods: untreated pts between 18 and 65y with stage I/II DLBCL and no adverse prognostic factors according to the aa-IPI were eligible. ACVBP consisted of 3 induction cycles given every 2 weeks: doxorubicin (75 mg/m2) day 1, cyclophosphamide (1.2g/m2) day 1, vindesine (2 mg/m2) day 1 and 5, bleomycin (10 mg) day 1 and 5, prednisone (60 mg/m2) day 1 to 5 followed by consolidation with metothrexate, ifosfamide, VP-16 and cytarabine. R-ACVBP consisted of the same regimen combined with 4 doses of rituximab (375 mg/m2) on day 1, 15, 29 and 43. Primary objective was EFS.Results: From 01/04 to 03/08, 223 pts were randomized, 113 in ACVBP and 110 in R-ACVBP arm. Characteristics were: median age 49y (18-65), stage I 63%, extranodal involvement 45%, bulky disease 4%. CR was 94% in ACVBP and 97% in ACVBP arm (ns). With a median follow-up of 43 months, the 3-y EFS was 82% (95% CI, 73% to 88%) in ACVBP and 93% (95% CI, 87% to 97%) in R-ACVBP group (P=0.0487). The 3-y PFS was 83% (95% CI, 74% to 89%) and 95% (95% CI, 89% to 98%) respectively (P=0.0205). OS did not significantly differ with a 3-y estimates of 97% (95% CI, 90% to 99%) for ACVBP and 98% (95% CI, 92% to 100%) for R-ACVBP (P=0.686). In multivariate analysis, a longer PFS was associated with R-ACVBP arm (P=0.0302) and lower b2-m level (P=0.0164). The same proportion of pts (27%) experienced at least 1 SAE in both groups. There were 4 deaths in each arm, with 1 treatment-related death in R-ACVBP (pneumocystis jiroveci pneumonia).Conclusion: the addition of only 4 doses of rituximab to ACVBP significantly improves EFS and PFS in younger pts with low-risk localized DLBCL.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

B-ryhmän beetahemolyyttinen streptokokki (GBS = Group B Streptococcus, Streptococcus agalactiae)aiheuttaa vakavia infektioita yleensä astasyntyneillä. Tartunta saadaan yleensä synnytyskanavasta ja riskitekijöinä ovat muun muassa keskosuus, ennenaikainen lapsivedenmeno ja äidin runsas Bstreptokokkikolonisaatio emättimessä. Bakteerin tunnistukseen käytetään tällä hetkellä viljelytekniikkaa, jonka tulos saadaan vasta 24-48 tunnin kuluttua. Opinnäytetyöni tarkoituksena on tutkia uutta ja nopeampaa tunnistusmenetelmää: GBS PNA FISH - tekniikkaa (Peptide Nucleic Acid Fluorescence in Situ Hybridization). Tarkoituksena on tutkia tekniikan spesifiteettiä ja sensitiviteettiä. Tekniikan spesifiteettiä tutkitaan B-ryhmän beetahemolyyttisellä streptokokilla sekä kuudella muulla emättimen normaaliflooraan kuuluvalla bakteerilajilla. Yhteensä bakteerikantoja on tutkimuksessa mukana 48 kappaletta. Tämän lisäksi tutkitaan myös tekniikan sensitiviteettiä, jota tutkitaan bakteereista tehdyn laimennossarjan avulla. Sensitiviteetti tutkitaan bakteeriseoksesta, jonne on B-ryhmän beetahemolyyttisen streptokokin lisäksi lisätty muita emättimen normaaliflooran bakteereita. Lisäksi sensitiviteetti tutkitaan pelkällä B-ryhmän beetahemolyyttisellä streptokokilla käyttäen sekä normaalia että bakteerin rikastusmenetelmää. Testeistä saadut tulokset tulkitaan fluoresenssimikroskoopin avulla. GBS PNA FISH -tekniikan spesifiteetti todettiin erittäin hyväksi. Tekniikka tunnisti kaikki B-ryhmän beetahemolyyttiset streptokokit positiivisiksi ja kaikki muut lajit antoivat negatiivisen tuloksen. B-streptokokin positiivisuus oli erotettavissa mikroskopoitaessa vahvana fluoresointina, kun taas muut lajit eivät fluoresoineet lainkaan. GBS PNA FISH -tekniikan sensitiivisyyden tulokset eivät kuitenkaan täyttäneet odotuksia. Ainoastaan bakteerin rikastusmenetelmällä saadut tulokset olivat loistavia, mutta bakteeriseoksella ja pelkällä B-ryhmän beetahemolyyttisellä streptokokilla saadut tulokset olivat lähes olemattomia. Rikastusmenetelmän kaikki laimennokset fluoresoivat positiivisina, kun taas muissa tapauksissa vain vahvin liuos antoi jonkinlaista positiivista fluoresointia. GBS PNA FISH -tekniikan spesifiteetti todettiin hyväksi. Tekniikan sensitiviteetti ei kuitenkaan vastaa käyttötarkoitusta ja todellisessa tilanteessa tekniikka ei pystyisi tunnistamaan sille spesifistä bakteeria muiden bakteerien joukosta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-molecular-weight (HMW) penicillin-binding proteins (PBPs) are divided into class A and class B PBPs, which are bifunctional transpeptidases/transglycosylases and monofunctional transpeptidases, respectively. We determined the sequences for the HMW PBP genes of Streptococcus gordonii, a gingivo-dental commensal related to Streptococcus pneumoniae. Five HMW PBPs were identified, including three class A (PBPs 1A, 1B, and 2A) and two class B (PBPs 2B and 2X) PBPs, by homology with those of S. pneumoniae and by radiolabeling with [3H]penicillin. Single and double deletions of each of them were achieved by allelic replacement. All could be deleted, except for PBP 2X, which was essential. Morphological alterations occurred after deletion of PBP 1A (lozenge shape), PBP 2A (separation defect and chaining), and PBP 2B (aberrant septation and premature lysis) but not PBP 1B. The muropeptide cross-link patterns remained similar in all strains, indicating that cross-linkage for one missing PBP could be replaced by others. However, PBP 1A mutants presented shorter glycan chains (by 30%) and a relative decrease (25%) in one monomer stem peptide. Growth rate and viability under aeration, hyperosmolarity, and penicillin exposure were affected primarily in PBP 2B-deleted mutants. In contrast, chain-forming PBP 2A-deleted mutants withstood better aeration, probably because they formed clusters that impaired oxygen diffusion. Double deletion could be generated with any PBP combination and resulted in more-altered mutants. Thus, single deletion of four of the five HMW genes had a detectable effect on the bacterial morphology and/or physiology, and only PBP 1B seemed redundant a priori.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Group B Streptococcus (GBS) three structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies and in vivo mutagenesis we performed a broad characterization of GBS sortase C. The high resolution X-ray structure of the enzymes revealed that the active site, located into the β-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the “lid”. We show that the catalytic triad and the predicted N- and C-terminal trans-membrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild type protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Group B Streptococcus (GBS), in its transition from commensal to pathogen, will encounter diverse host environments and thus require coordinately controlling its transcriptional responses to these changes. This work was aimed at better understanding the role of two component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knock-out strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1-3% of the genome. Interestingly, two sugar phosphotransferase systems appeared differently regulated in the knock-out mutant of TCS-16, suggesting an involvement in monitoring carbon source availability. High throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16 with concomitant dramatic up-regulation of the adjacent operon encoding a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization and impaired growth/survival in the presence of vaginal mucoid components. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and also provide experimental evidence for TCS-17/RgfAC involvement in virulence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Group B Streptococcus [GBS; Streptococcus agalactiae] is the leading cause of life-threatening diseases in newborn and is also becoming a common cause of invasive diseases in non-pregnant, elderly and immune-compromised adults. Pili, long filamentous fibers protruding from the bacterial surface, have been discovered in GBS, as important virulence factors and vaccine candidates. Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date and their mechanisms of transpeptidation and regulation need to be further investigated. The available three-dimensional structures of these enzymes reveal a typical sortase fold except for the presence of a unique feature represented by an N-terminal highly flexible loop, known as the “lid”. This region interacts with the residues composing the catalytic triad and covers the active site, thus maintaining the enzyme in an auto-inhibited state and preventing the accessibility to the substrate. It is believed that enzyme activation may occur only after lid displacement from the catalytic domain. In this work we provide the first direct evidence of the regulatory role of the lid, demonstrating that it is possible to obtain in vitro an efficient polymerization of pilin subunits using an active C sortase lid mutant carrying a single residue mutation in the lid region. Moreover, biochemical analyses of this recombinant mutant reveal that the lid confers thermodynamic and proteolytic stability to the enzyme. A further characterization of this sortase active mutant showed promiscuity in the substrate recognition, as it is able to polymerize different LPXTG-proteins in vitro.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) is a Gram-positive human pathogen representing one of the most common causes of life-threatening bacterial infections such as sepsis and meningitis in neonates. Covalently polymerized pilus-like structures have been discovered in GBS as important virulence factors as well as vaccine candidates. Pili are protein polymers forming long and thin filamentous structures protruding from bacterial cells, mediating adhesion and colonization to host cells. Gram-positive bacteria, including GBS, build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates that are the backbone protein forming the pilus shaft and two ancillary proteins. Also the cell-wall anchoring of the pilus polymers made of covalently linked pilin subunits is mediated by a sortase enzyme. GBS expresses three structurally distinct pilus types (type 1, 2a and 2b). Although the mechanisms of assembly and cell wall anchoring of GBS types 1 and 2a pili have been investigated, those of pilus 2b are not understood until now. Pilus 2b is frequently found in ST-17 strains that are mostly associated with meningitis and high mortality rate especially in infants. In this work the assembly mechanism of GBS pilus type 2b has been elucidated by dissecting through genetic, biochemical and structural studies the role of the two pilus-associated sortases. The most significant findings show that pilus 2b assembly appears “non-canonical”, differing significantly from current pilus assembly models in Gram-positive pathogens. Only sortase-C1 is involved in pilin polymerization, while the sortase-C2 does not act as a pilin polymerase, but it is involved in cell-wall pilus anchoring. Our findings provide new insights into pili biogenesis in Gram-positive bacteria. Moreover, the role of this pilus type during host infection has been investigated. By using a mouse model of meningitis we demonstrated that type 2b pilus contributes to pathogenesis of meningitis in vivo.