957 resultados para Stormwater quality modelling
Resumo:
An integrated approach to climate change impact assessment is explored by linking established models of regional climate (SDSM), water resources (CATCHMOD) and water quality (INCA) within a single framework. A case study of the River Kennet illustrates how the system can be used to investigate aspects of climate change uncertainty, deployable water resources, and water quality dynamics in upper and lower reaches of the drainage network. The results confirm the large uncertainty in climate change scenarios and freshwater impacts due to the choice of general circulation model (GCM). This uncertainty is shown to be greatest during summer months as evidenced by large variations between GCM-derived projections of future tow river flows, deployable yield from groundwater, severity of nutrient flushing episodes, and Long-term trends in surface water quality. Other impacts arising from agricultural land-use reform or delivery of EU Water Framework Directive objectives under climate change could be evaluated using the same framework. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological path-ways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.
Resumo:
The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.
Resumo:
Nondestructive techniques are extensively researched for the measurement of physical properties of fruits related to quality. Optical properties can be applied mainly in the detection of those quality features which are related to the chemical composition of the fruit, color (in the VIS region) or chemical constituents (sugar, in the MR region) being the most important. The most relevant mechanical property of fruits is consistency, generally called firmness, and to date only techniques which are able to measure the mechanical properties of the fruit bulk tissue are used for its prediction. Fruits can be modelled as elastic bodies, or at least as partially elastic. Therefore, the measurement of some elastic constants of the fruit can be used for the evaluation of its firmness. The differences in the response to loading are relevant in studying a) fruit firmness and b) bruising susceptibility. Both have been modelled for selected fruit species and varieties.
Resumo:
La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.
Resumo:
Só está disponível o resumo.
Resumo:
Mode of access: Internet.
Resumo:
A one-dimensional lake water quality model which includes water temperature, phytoplankton, phosphorus as phosphate, nitrogen as ammonia, nitrogen as nitrate and dissolved oxygen concentrations, previously calibrated for Lake Calhoun (USA) is applied to Uokiri Lake (Japan) for the year 1994. The model simulated phytoplankton and nutrient concentrations in the lake from July to November. Most of the water quality parameters are found to be the same as for Lake Calhoun. To predict probable lake water quality deterioration from algal blooming due to increased nutrient influx from river inflow, the model was run for several inflow water conditions. Effects of inflow nutrient concentration, inflow volume, inflow water temperatures are presented separately. The effect of each factor is considered in isolation although in reality more than one factor can change simultaneously. From the results it is clear that inflow nutrient concentration, inflow volume and inflow water temperature show very regular and reasonable impacts on lake water quality.
Resumo:
The effect of retrofitting an existing pond on removal efficiency and hydraulic performance was modelled using the commercial software Mike21 and compartmental modelling. The Mike21 model had previously been calibrated on the studied pond. Installation of baffles, the addition of culverts under a causeway and removal of an existing island were all studied as possible improvement measures in the pond. The subsequent effect on hydraulic performance and removal of. suspended solids was then evaluated. Copper, cadmium, BOD, nitrogen and phosphorus removal were,also investigated for that specific improvement measure showing the best results. Outcomes of this study reveal that all measures increase the removal efficiency of suspended solids. The hydraulic efficiency is improved for all cases, except for the case where the island is removed. Compartmental modelling was also used to evaluate hydraulic performance and facilitated a better understanding of the way each of the different measures affected the flow pattern and performance. It was concluded that the installation of baffles is the best of the studied measures resulting in a reduction in the annual load on the receiving lake by approximately 8,000 kg of suspended solids (25% reduction of the annual load), 2 kg of copper (10% reduction of the annual load) and 600 kg of BOD (10% reduction of the annual load).
Resumo:
Broccoli is a vegetable crop of increasing importance in Australia, particularly in south-east Queensland and farmers need to maintain a regular supply of good quality broccoli to meet the expanding market. A predictive model of ontogeny, incorporating climatic data including frost risk, would enable farmers to predict harvest maturity date and select appropriate cultivar – sowing date combinations. To develop procedures for predicting ontogeny, yield and quality, field studies using three cultivars, ‘Fiesta’, ‘Greenbelt’ and ‘Marathon’, were sown on eight dates from 11 March to 22 May 1997, and grown under natural and extended (16 h) photoperiods at the University of Queensland, Gatton Campus. Cultivar, rather than the environment, mainly determined head quality attributes of head shape and branching angle. Yield and quality were not influenced by photoperiod. A better understanding of genotype and environmental interactions will help farmers optimise yield and quality, by matching cultivars with time of sowing. The estimated base and optimum temperature for broccoli development were 0°C and 20 °C, respectively, and were consistent across cultivars, but thermal time requirements for phenological intervals were cultivar specific. Differences in thermal time requirement from floral initiation to harvest maturity between cultivars were small and of little importance, but differences in thermal time requirement from emergence to floral initiation were large. Sensitivity to photoperiod and solar radiation was low in the three cultivars used. This research has produced models to assist broccoli farmers in crop scheduling and cultivar selection in south-east Queensland.
Addressing Water Quality Problems Through the Integration of Ecological and Economic Modelling Vol 3
Resumo:
The study analyzed hydro-climatic and land use sensitivities of stormwater runoff and quality in the complex coastal urban watershed of Miami River Basin, Florida by developing a Storm Water Management Model (EPA SWMM 5). Regression-based empirical models were also developed to explain stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers in six highly urbanized canal basins of Southeast Florida. Stormwater runoff and quality were most sensitive to rainfall, imperviousness, and conversion of open lands/parks to residential, commercial and industrial areas. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors while external stressors were dominant for total nitrogen and specific conductance. The research findings and tools will be useful for proactive monitoring and management of storm runoff and urban stream water quality under the changing climate and environment in South Florida and around the world.